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Abstract—Wireless sensor networks are designed to perform
on inference the environment that they are sensing. Due to the
inherent physical characteristics of systems under investigation,
non-negativity is a desired constraint that must be imposed
on the system parameters in some real-life phenomena sensing
tasks. In this paper, we propose a kernel-based machine learning
strategy to deal with regression problems. Multiplicative update
rules are derived in this context to ensure the non-negativity
constraints to be satisfied. Considering the tight energy and
bandwidth resource, a distributed algorithm which requires
only communication between neighbors is presented. Synthetic
data managed by heat diffusion equations are used to test the
algorithms and illustrate their tracking capacity.

I. INTRODUCTION
Wireless sensor networks (WSNs) rely on sensor devices

deployed in an environment to provide an inexpensive way to
monitor physical phenomena, such as temperature, humidity,
acoustic, etc. In traditional centralized solutions, the nodes in
the network collect observations and send them to a central
basic station for processing. This mode requires a powerful
computation center, in addition to extensive amount of com-
munication between the nodes and the center. In distributed
strategies, estimates performed by nodes rely only on local
data and on interactions with immediate neighbors. The burden
of processing and communications is significantly reduced.
Distributed learning in wireless sensor networks has been
addressed in a variety of research works.
In many real-life phenomena, including biological and

physical ones, physical characteristics inherent to the system
under investigation require the imposition of non-negativity
constraints on the parameters to estimate. For instance, obser-
vations in studies of concentration fields or thermal radiation
fields are awlays described with non-negative values ( in
ppm or in Kelvin). Non-negativity as a physical constraint
has received growing attention from the signal processing
community during the last decade.
Non-parametric approach based on reproducing kernel

methods have recently been successfully applied to distributed
regression with collaborative networks. In [1], the authors
present a general framework for distributed linear regression
motivated by WSNs. In [2], a learning algorithm based on
successive orthogonal projections is derived to solve the
regularized kernel least-squares problem for regression in
sensor networks. The work in [3] generalizes the model and

algorithm discussed in [2]. [4] makes a detailed summarization
of the distributed inference in the class of work presented in
previous two literatures. In [5], the authors present a projection
based kernel distributed learning strategy with reduced order
models by using a sparsification criterion. Some distributed
estimation algorithms have been also proposed in the context
of distributed adaptive filtering, including incremental LMS
[6], diffusion LMS [7] and diffusion RLS [8]. These works
provide comprehensive studies in the functional regression
and estimation for distributed learning in WSNs. Nevertheless,
none of these algorithms could be used directly to solve the
estimation problems in sensor networks under non-negativity
constraints.
In this paper, we concentrate on the problem of modeling

physical phenomena under non-negativity constraints, and of
tracking its evolution. Firstly we formulate the non-negative
regression with kernels in a centralized context. A simple
multiplicative algorithm is derived to solve this problem. Then
we show how the optimization problem can be relaxed to a
problem of distributed regression in which nodes only need to
communicate with neighbors.

II. NON-NEGATIVE REGRESSION FOR INFERENCE

Within the context of learning in a wireless sensor network
of N sensors, we often model a physical phenomenon as a
function of the location. Consider a relationship ψ(.) between
the sensor’s measurement and its position xn. We seek to
estimate the function ψ(·) based on newly available position-
measurement data yn to minimize the summed square error

min
ψ∈H

N∑
n=1

E (ψ(xn)− yn)
2
. (1)

By virtue of the representer theorem, the function ψ(·) of
reproducing Hilbert kernel space H can be written with a
kernel expansion ψ(·) =

∑N
n=j αjκ(·,xn). Doing that, the

cost function can be written as

J(α) =

N∑
n=1

E(

N∑
j=1

αjκ(xn,xj)− yn)
2

=

N∑
n=1

E
(
α�κxn

− yn
)2

. (2)
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After determining the weight vector α , the field can be
inferred at any points x. One of the most widely used kernels
is the Gaussian kernel κ(xi,xj) = e−‖xi−xj‖

2/2σ2

. When
a non-negative field is to be estimated, and considering that
the Gaussian kernel is always positive, each component of
the coefficient vector α should be constrained to be non-
negative to ensure a non-negative inference function ψ(x) at
any given position x. The constrained optimization problem
can be formalized as

αo = argmin
α

J(α) (3)

subject to α ≥ 0 (4)

The gradient of J(α) is easily computed as follows

∇J(α) =

N∑
n=1

E
(
κxn

κ�
xn

α− ynκxn

)
(5)

As the evaluation of the gradient usually cannot be achieved in
many real-life applications, we use the instantaneous estimator

∇̃J(α) =
N∑

n=1

(
κ�
xn

κxn
α− ynκxn

)
(6)

Note that ψ(.) is linear with respect to the kernel functions
κ(.,xn), although it is nonlinear with respect to xn.

A. Gradient projection algorithm

Gradient projection is a popular family of methods to
solve this kind of optimization problem. They are based on
successive projects on the feasible region, which are non-
expensive operations when the constraints are simple. We
move from α(k) to iterate α(k+1) as follows, first, we choose
some scalar parameter η(k) > 0 and set

β(k) = (α(k)− η(k)∇J(α(k)))
+

(7)

We then choose a second scalar μ(k) ∈ [0, 1] and set

α(k + 1) = α(k) + μ(k)(β(k)−α(k)) (8)

Their low memory requirements and simplicity make them
attractive for large scale problems. On the other hand, it is well
known that these methods may exhibit very slow convergence
if not combined with appropriate step length selection.

B. Multiplicative weight update algorithm
In this paper, we are more interested in another class of

algorithm in multiplicative form. Let us now decompose the
gradient −∇̃J(α) as following

[−∇J̃(α(k))]i = [U(α(k))]i − [V (α(k))]i (9)

where [U(α(k))]i and [V (α(k))]i are strictly positive com-
ponents. Obviously, such a decomposition is not unique but
always exists. Consider the update rule of gradient method

αi(k + 1) = αi(k) + ηi(k)[−∇J̃(α(k))]i (10)

If the step size is taken as

ηi(k) =
αi(k)

[V (α(k))]i
(11)

The update equation for the i-th component can then be
expressed as

αi(k + 1) = αi(k)
[U(α(k))]i
[V (α(k))]i

(12)

of which the vector form is

α(k + 1) = α(k)diag
(
[U(α(k))]i
[V (α(k))]i

)
(13)

This expression is referred to as the multiplicative weight
update algorithm. If we initialize the weight vector with a
positive vector, the constraints will be always satisfied due
to the non-negativity of [U(α(k))]i and [V (α(k))]i. The
gradient defined by (6) can be decomposed as in (9) by setting

U(α(k)) =

N∑
n=1

ynκxn
+ ξ (14)

V (α(k)) =

N∑
n=1

κxn
κ�
xn

α(k) + ξ (15)

with ξ positive to avoid [U(α(k))]i to become negative due to
the disturbance of some kind of additive observation noise. At
each instant k, with the measure yn,k, a centralized algorithm
vector weight update is then

α(k + 1) = α(k)diag

(
[
∑N

n=1
ynκxn

+ ξ]i

[
∑N

n=1
κxn

κ�
xn

α(k) + ξ]i

)
(16)

III. DISTRIBUTED REGRESSION WITH DIFFUSION
STRATEGY IN WSNS

Nevertheless the centralized algorithm defined by (16) is not
suitable for distributed learning in the sensor networks as the
order of models scales linearly with the number of deployed
sensors. Moreover, each sensor should pass their measures to
the center. In what follows, we show how the optimization
problem in (2) can be relaxed for the problem of distributed
inference.

A. Localized cost function

Let Nk ⊆ {1, 2, ..., N} denote the set of neighbors for
sensor k. And we assume that each link can support the simple
messages to be passed by our algorithm. Consider an N ×N
matrix B with with non-negative entries {bn,k} such that

bn,k = 0 if n /∈ Nk B1 = 1 1
�
B = 1

� (17)

where 1 denotes the N × 1 vector with unit entries. With the
constraint of communication range, the cost function of (2) is
rewritten as follows

J(α) = Jk(α) +
N∑

n=1,n�=k

Jn(α) (18)

We define diagonal matricesCk for each node k with elements
Ck: ck,i,i = 1 if i ∈ Nk and ck,i,i = 0 otherwise. The local
cost function is defined as

Jk(α) =

N∑
n=1

bn,kE
(
α�

Cnκxn
− yn

)2 (19)
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which is actually equivalent to

Jk(αk) =
∑
n∈Nk

bn,kE
(
α�

k κxn
− yn

)2 (20)

Each node could only communicate with the nodes in the range
of neighborhood, from the view of node k, the instantaneous
gradient of the cost function (18) For each node k

[∇J(αk)]i =

[ ∑
n∈Nk

bn,k
(
κxn

κ�
xn

αk − ynκxn

)]
i

+

⎡⎣ N∑
n=1,n�=k

Cn∇Jn(α)

⎤⎦
i

(21)

where i ∈ Nk. For node k, to obtain the information of the
second part of (21) two-hop transmission is needed, which
introduces inconvenience to the learning process in networks.
To relax the problem so that the sensors only need to get
information from its neighbors, we use

[∇J(αk)]i =

[ ∑
n∈Nk

bn,k
(
κxn

κ�
xn

αk − ynκxn

)]
i

+

⎡⎣ N∑
n∈Nk,n�=k

Cn∇Jn(α)

⎤⎦
i

(22)

The first part of (22) can be viewed as the gradient of local
cost function ∇Jk(αk). Using the proposed multiplicative
algorithm developed in the section II-B, [−∇Jk(αk)]i is
decomposed into two positive components

[Uk(α(k))]i =

[ ∑
n∈Nk

bn,kynκxn

]
i

+ ξ (23)

[Vk(α(k))]i =

[ ∑
n∈Nk

bn,kκxn
κ�
xn

αk(k)

]
i

+ ξ (24)

The second part of (22) could be viewed as a regularization
item for the local gradient decomposed using[

Ũk(α(k))
]
i
=

∑
n∈Nk,n�=k

[Un(α(k))]i (25)[
Ṽ k(α(k))

]
i
=

∑
n∈Nk,n�=k

[V n(α(k))]i (26)

where [U(α(k))]i and [V (α(k))]i are transferred from its
neighbors. And they ensure the positivity of

[
Ũk(α(k))

]
i
and[

Ṽ k(α(k))
]
i
. Finally, the coefficients update rule for node k

is written in multiplicative form as

αi(k + 1) = αi(k)
[Uk(α(k))]i +

[
Ũk(α(k))

]
i

[Vk(α(k))]i +
[
Ṽ k(α(k))

]
i

(27)

The algorithm is depicted pictorially in figure 1.

Fig. 1. The schema of the algorithm

B. Aggregation

When we wish to find the field at the position x ∈ R
2, it

may employ one of the following strategies to aggregate the
estimate of the network.
1) Single Sensor: The decision center will simply choose

the sensor the most approached to the position x, and use the
estimate of field at x of this sensor.
2) m-Nearest-neighbor: The decision center will average

the estimates provided by them sensors nearest x. The ”single
sensor” rule is a special case of this rule, corresponding to
m = 1.

IV. SIMULATION EXPERIMENTS

To illustrate the relevance of the proposed technique, we
consider a classical application of estimating a heat diffusion
field governed by the partial differential equation

∂T (x, t)

∂t
− c∇2

x
T (x, t) = Q(x, t). (28)

Here T (x, t) denotes the temperature as a function of space
and time, c is a medium-specific parameter, ∇2

x
is the Laplace

spatial operator, and Q(x, t) is the heat added. The temper-
ature field generated here is a non-negative field. With the
Gaussian kernel function φi(x) are always positive, to ensure
that the estimate of any position is non-negative, it is required
that non-negativity constraints are imposed on the coefficients
α.
We studied the problem of monitoring the evolution of

the heat in a 2-by-2 square region with open boundaries and
conductivity c = 0.1, using N = 100 random positions with
known measurement. Two heat sources of intensity 200 W
were placed within the region, the first one was activated
from t = 1to t = 100, and the second one from t = 100
to t = 200. The measurement is corrupted by a additive
Gaussian noise with variance of 0.01. Preliminary experiments
were conducted to tune the parameters, yielding the bandwidth
of Gaussian function σ = 0.1826. The convergence of the
proposed algorithm is illustrated in where we show the evolu-
tion overtime of the normalized mean-square prediction error,
defined on all the measure positions by∑N

n=1
(dn − ψ(xn))

2∑N
n=1

d2n
.
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The following experiments are conducted for the purpose
of comparison:
1) Centralized multiplicative algorithm described in section
II-B: Due to the unscalability centralized algorithms, this
centralized method may not be appropriate if adopted
directly into the wireless sensor networks; however, we
implement it as a optimal solution for comparison.

2) Proposed distributed multiplicative algorithm: Our pro-
posed distributed algorithm derived in section III is
tested to show its ability of modeling such a field and
its pursuing capacity of the environment change;

3) Centralized gradient projection algorithm in section
II-A: One centralized gradient projection algorithm is
tested here to compared with the multiplicative algo-
rithm. The performance of algorithms in this class is
highly dependent on the step length selection strategy.
Considerable attention has been paid to an approach due
Barzilai-Borwein gradient projection method.

4) Distributed gradient projection algorithm: In order com-
pare with the distributed multiplicative algorithm, we
adapt the centralized gradient projection algorithm of 3)
to minimize local cost functions within the neighbor-
hood nodes.

Two random scenarios, respectively depicted in Figure 2 and
Figure 3, are taken into simulations to show the convergence
performance. In the 1st scenario, two sources are located at
positions relatively ”poor” of sensors; otherwise, in the 2nd
scenario, the two sources are located at better positions.
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Fig. 2. 1st simulation scenario with 100 randomly distributed sensors.
The edges between two nodes show the neighborhood relation. Two
magenta � represent the positions of two sources.

The abrupt change in heat sources at t = 100 is clearly
visible, and hightlights the convergence behavior of these
algorithms. In Figure 4, there’s slight difference between
multiplicative algorithm and gradient projection with Barzilai-
Borwein step size selection, which shows efficiency and sim-
plicity of the proposed algorithm. With all available informa-
tion of the network the centralized methods perform better than
distributed ones. In Figure 5, with better positions of sensors
relative to even sources, the estimation error of the network
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Fig. 3. 2nd simulation scenario with 100 randomly distributed
sensors. The edges between two nodes show the neighborhood
relation. Two magenta � represent the positions of two sources. In
this scenario, the positions of two sources are more close to sensors
than that in scenario1.
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Fig. 4. Convergence comparison among four methods of the 1st
scenario. In the legend MP represents for multiplicative method; GP
represents for gradient projection.
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Fig. 5. Convergence comparison among four methods of the 2nd
scenario. In the legend MP represents for multiplicative method; GP
represents for gradient projection.

is apparently lower than that in the 1st scenario. However, the
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centralized multiplicative shows a slower convergence rate as
the abrupt change after t = 100 than the distributed algorithm.
This might be caused by the longer filter length (N=100).
Whereas the Barzilai-Borwein gradient projection performs
better here at the cost of manipulating the Gramme matrix
of large dimension.

V. CONCLUSION
In many real-life phenomena non-negative is a desired

constraint that must be imposed on the parameters to estimate
due to the inherent physical characteristics of systems.. In this
paper, we proposed a multiplicative method for data inference
under non-negativity constraints. Under the context of wireless
sensor networks, we developed a distributed learning algorithm
to enable each sensor to estimate the non-negative field with
the help of neighbor information. The proposed algorithm also
shows a good performance in its tracking capacity.
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