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Abstract—In hyperspectral images, pixels are mixtures of
spectral components associated to pure materials. Although the
linear mixture model is the most studied case, nonlinear models
have been taken into consideration to overcome some limitations
of the linear model. In this paper, nonlinear hyperspectral un-
mixing problem is studied through kernel-based learning theory.
Endmember components at each band are mapped implicitly in a
high feature space, in order to address the nonlinear interaction
of photons. Experiment results with both synthetic and real
images illustrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Optimizing an objective function subject to constraints

is very common in statistical signal and image processing.

Constraints represent prior knowledge that may lead to proper

solutions, or may reduce the feasible space of solutions when

the problem is ill-conditioned. Non-negativity is probably one

of the most commonly used constraints. It is often imposed

on the parameters to estimate in order to avoid physically

absurd and uninterpretable results. Non-negative least-square

problems (NNLS) have been addressed in applications ranging

from image deblurring [1] to impulse response estimation [2].

Non-negative matrix factorization (NMF) [3], which is closely

related to blind deconvolution problems, have also found direct

application in hyperspectral imaging [4].

A variety of methods have been proposed in the literature

to tackle the NNLS problem. The Active set algorithm of

Lawson and Hanson [5] is a batch resolution technique for

NNLS problems, which has become a standard among the

most frequently used methods. Projected gradient methods [6],

[7] are based on successive projections on the feasible region.

Multiplicative algorithms are very popular to solve NMF

problems [8]. All these algorithms are however based on batch

processing, which is not suitable for online system identifica-

tion problems. In [9], [10], online system identification subject

to non-negativity constraints on the parameters to estimate was

addressed. A LMS-type algorithm, called non-negative LMS

algorithm (NN-LMS), has been proposed to compute solutions

adaptively. It relies on stochastic gradient descent combined

with a fixed point iteration scheme to converge to a solution

that satisfies to Karush-Kuhn-Tucker conditions.

During convergence of NN-LMS algorithm, it has been ob-

served that weights may have different convergence rates and

accuracy, especially those in the active set since they become

smaller and finally tend to zero as iterations proceed. In this

paper we introduce a modified NN-LMS algorithm in order to

alleviate this problem. We also propose analytical models to

characterize the stochastic behavior of this algorithm.

II. MODIFIED NN-LMS ALGORITHM

A. Presentation of the NN-LMS algorithm

Consider an unknown system, only characterized by a set of

real-valued discrete-time responses to known stationary inputs.

The problem is to derive a transversal filter model

y(n) = α�x(n) + z(n), (1)

with α = [α1, α2, . . . , αN ]� the vector of model parameters,

and x(n) = [x(n), x(n−1), . . . , x(n−N+1)]� the observed

data vector. The input signal x(n) and the desired output signal

y(n) are assumed zero-mean stationary. Sequence z(n) repre-

sents measurement noise and modeling errors. Due to inherent

physical characteristics of systems under investigation, here

we consider the problem of identifying the optimum model

defined by

αo = argmin
α

J(α)

subject to αi ≥ 0, ∀i,
(2)

with J(α) = E{[y(n) − α�x(n)]2}, and αo the solution of

the constrained optimization problem. The KKT conditions

at the optimum αo can be combined into the following

expression [9], [10]

αo
i [−∇αJ(α

o)]i = 0 (3)

where the extra minus sign is just used to make a gradient

descent of J(α) apparent. Equations of the form g(u) = 0 can

be solved with a fixed-point algorithm, under some conditions

on function g, by considering the problem u = u + g(u).

Implementing this fixed-point strategy with (3) leads us to the

component-wise gradient descent algorithm

αi(k + 1) = αi(k) + η αi(k)[−∇αJ(α(k))]i (4)
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where η is a positive step size that must be tuned to construct

a contraction scheme and to control the convergence rate.

Using usual stochastic gradient approximations as in LMS and

rewriting the update equation in vectorial form, we obtain the

NN-LMS algorithm [9], [10]

α(n+ 1) = α(n) + η e(n)Dα(n)x(n) (5)

where Dα(n) stands for the diagonal matrix with diagonal

entries given by α(n), and e(n) = y(n) − α�(n)x(n).
The direction of the gradient vector is modified by the pre-

multiplication by Dα(n), and the weight vector update is no

longer in the direction of the gradient. This is a consequence

of the constraints.

B. Modified NN-LMS

We note that in NN-LMS algorithm, each component of the

gradient vector is scaled by a different value αi(n)η. However,

these factors that modify the step size along each axis result in

different convergence rates and accuracy for each component

of α(n), especially for the weights corresponding to the active

set as they become smaller through iterations, and finally tend

to zero. In order to compensate this unbalance of convergence

rates, we now introduce the modified NN-LMS algorithm.

Considering KKT condition (3), we can equivalently write

[αo
i ]

γ [−∇αJ(α
o)]i = 0 (6)

with γ a positive real number. Implementing the fixed-point

iteration strategy with equation (6) and using instantaneous

estimates for the gradient leads us to the following algorithm

α(n+ 1) = α(n) + η e(n)Dx(n)α
γ(n) (7)

In the above equation, with abuse of notation, αγ(n) denotes

the exponential value γ applied to each component αi(n)

of α(n) as follows: αγ
i (n) = sign{αi(n)}|αi(n)|γ . We

recommend to specify parameter γ in the form γ = p
q where

p and q are both integer numbers, and 0 < p ≤ q. Although

it can be shown that weights are always non-negative thanks

to an appropriate step size, the fixed-point 0 can be reached

by the left side 0− with less strict step size selection. See [9]

for more details with NN-LMS. Just as the gamma correction

in image processing, an exponential value 0 < γ < 1 reduces

the dynamic range of parameter vector α(n). Each component

αi(n) will be closer to 1 no matter it is larger or smaller than

1. When γ = 1, the update equation degenerates to the NN-

LMS algorithm in the original form (5). A γ larger than 1

is not recommended in most cases, as it enlarges difference

among the components.

III. ALGORITHM BEHAVIOR MODELING

We now propose models to characterize the stochastic

behavior of the modified NN-LMS algorithm. Fig. 1 shows a

block diagram of the problem studied in this paper. The input

signal x(n) and the desired output signal y(n) are assumed

stationary and zero-mean. Let us denote the solution of the

least-mean-square problem by α∗,

α∗ = argmin
α

E{[y(n)−α�x(n)]2}. (8)

It is assumed that z(n) is stationary, zero-mean with variance

σ2
z and statistically independent of any other signal. Thus,

E{z(n)Dx(n} = 0. In what follows, we shall study the

behavior of (7) in the mean sense.

z(n)

y(n)
x(n)

α(n)

Algo.

+

+

+

−
e(n)α∗

Fig. 1. Adaptive system under study

A. Mean weight behavior analysis

Defining the weight-error vector v(n) with respect to the

unconstrained solution α∗, v(n) = α(n) − α∗, the update

equation (7) can be written as

v(n+ 1) = v(n) + η e(n)Dx(n)
(
v(n) +α∗)γ . (9)

Due to the nonlinear term (v(n) + α∗)γ in the r.h.s of (9),

calculations of v(n+1) cannot be easily operated. We thus use

the first order approximation to linearize this term. Expressed

near a point voi , it is written as

(vi(n) + α∗
i )

γ

≈(voi + α∗
i )

γ + γ (voi + α∗
i )

γ−1 (vi(n)− voi )

=((voi + α∗
i )

γ − γ (voi + α∗
i )

γ−1 voi ) + γ (voi + α∗
i )

γ−1 vi(n)

For sake of notational simplicity, we denote

ri = (voi + α∗
i )

γ − γ (voi + α∗
i )

γ−1 voi

si = γ (voi + α∗
i )

γ−1

In order to calculate E{v(n + 1)}, the point vo should be

chosen at each iteration. A direct choice of vo is E{v(n)},

which can be viewed as a constant during this iteration.

Consequently r and s are then denoted by r(n) and s(n)

with the instant index n. The expected value E{v(n + 1)}
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can be expressed in vector form by

E{v(n+ 1)}
=E{v(n)}+ η E{ z(n)Dx(n)}E{

(
r(n) +Ds(n)v(n)

)
}

− η E{Dx(n) (r(n) +Ds(n)v(n))x
�(n)v(n)}.

where Ds(n) is the diagonal matrix with s(n) as the diagonal

elements. Considering that E{z(n)Dx(n)} = 0, the above

expression becomes

E{v(n+ 1)} = E{v(n)} − ηDr(n)E{x(n)x�(n)v(n)}
− ηDs(n)E{D(x)v(n)v�(n)x(n)} (10)

where Dr(n) is the diagonal matrix with r(n) as the diagonal

elements. The second expectation in the r.h.s of (10) is directly

given by E{x(n)x�(n)v(n)} = RxE{v(n)}. Then using

the result we have obtained in the analysis of NN-LMS

yields [9]

E{v(n+ 1)} = E{v(n)} − ηDr(n)Rx E{v(n)}
− ηDs(n) diag{Rx K(n)}. (11)

where K(n) is the covariance matrix of v(n). This equation

requires second-order moments defined by K(n) in order to

update the first-order one E{v(n)}. To simplify the analysis,

we use the following separation approximation

K(n) ≈ E{v(n)}E{v�(n)} (12)

We thus obtain the result

E{v(n+ 1)} = E{v(n)} − ηDr(n)Rx E{v(n)}
− ηDs(n) diag{Rx E{v(n)}E{v�(n)}}.

(13)

The justification of this approximation can be found in [9]

and extensive simulation results have shown us that approxi-

mations used in the derivation provide sufficient accuracy in

modeling the mean behavior of the weights.

B. Excess mean square error analysis

We now present the model of second-order behavior. Using

e(n) = z(n) − v�(n)x(n), neglecting the statistical depen-

dence of x(n) and v(n), and using the properties assumed for

z(n) leads to the following expression for the mean-square

estimation error (MSE):

E{e2(n)} = E{(z(n)− v�(n)x(n))(z(n)− v�(n)x(n))}
= σ2

z + E{v�(n)x(n)x�(n)v(n)}
= σ2

z + trace{Rx K(n)}.
(14)

The excess mean square error is defined by Jemse =

trace{Rx K(n)}. We thus derive a recursion for K(n) =

E{v(n)v�(n)} starting from the weight error update equation

(9). Premultiplying equation (9) by its transpose, we obtain

v(n+ 1)v�(n+ 1) =v(n)v�(n)

−η (P̃ 1(n)) + P̃
�
1 (n)) + η2 P̃ 2(n)

+η2 (P̃ 3(n) + P̃
�
3 (n)) + η2 P̃ 4(n)

−η (P̃ 5(n) + P̃
�
5 (n)) + η2 P̃ 6(n)

+η2 (P̃ 7(n) + P̃
�
7 (n)) + η2 P̃ 8(n)

(15)

As we approximate the nonlinear term (α∗
i + vi(n))

γ using

the first-order approximation which is of the form (ri(n) +

si(n)vi(n)), the terms P̃ 1 to P̃ 8 are then given by

P̃ 1 = E{v(n)(v�(n)x(n)Dx(n)r(n))
�}

P̃ 2 = E{z(n)Dx(n)r(n)(z(n)Dx(n)r(n))
�}

P̃ 3 = E{z(n)Dx(n)r(n)(z(n)Dx(n)Ds(n)v(n))
�}

P̃ 4 = E{z(n)Dx(n)Ds(n)v(n)(z(n)Dx(n)Ds(n)v(n))
�}

P̃ 5 = E{v(n)(v�(n)x(n)Ds(n)v(n))
�}

P̃ 6 = E{v�(n)x(n)Dx(n)r(n)(v
�(n)x(n)Dx(n)r(n))

�}
P̃ 7 = E{v�(n)x(n)Dx(n)r(n)

(v�(n)x(n)Dx(n)Ds(n)v(n))
�}

P̃ 8 = E{v�(n)x(n)Dx(n)Ds(n)v(n)

(v�(n)x(n)Dx(n)Ds(n)v(n))
�}

where Dr(n) and Ds(n), as defined previously, are determin-

istic values at each iteration. Taking the expected value of (15),

and using the statistical properties of z(n), with very similar

calculations to the analysis of NN-LMS algorithm in [9], we

can obtain the recursion of K(n+ 1)

K(n+ 1) = K(n)

− η (P 1(n) + P�
1 (n)) + η2σ2

z P 2(n)

+ η2σ2
z (P 3(n) + P�

3 (n)) + η2σ2
z P 4(n)

− η (P 5(n) + P�
5 (n)) + η2 P 6(n)

+ η2 (P 7(n) + P�
7 (n))

+ η2 P 8(n)

(16)

with the terms P 1 to P 8 defined as

P 1 = Dr(n)Rx K(n) (17)

P 2 = Dr(n)Rx Dr(n) (18)

P 3 = Dr(n)Rx E{Dv(n)}Ds(n) (19)

P 4 = Dr(n)Rx ◦K(n)Dr(n) (20)

P 5 = K(n)Rx E{Dv(n)}Ds(n) (21)

P 6 = Dr(n)Q(n)Dr(n) (22)

P 7 = Dr(n)Q(n)E{Dv(n)}Ds(n) (23)

P 8 = Ds(n) (Q(n) ◦ K(n))Ds(n) (24)
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where ◦ is the Hadamard product, and the matrix Q is defined

as

Q(n) = Dα∗ (2Rx K(n)Rx + trace{Rx K(n)}Rx)

Using P 1 to P 8, we can obtain the expression for K(n+1)

as a function of K(n) for this modified algorithm to calculate

the excess mean square error.

IV. SIMULATION RESULTS

In this section, simulations were firstly conducted to verify

the validity of the first-order and second-order behavior models

of the modified NN-LMS algorithm. After that, we compared

the performance of the modified algorithm with that of the

original NN-LMS.

A. Consistency of models

We illustrate the accuracy of the model (13) through an

example where inputs x(n) are correlated in time. Consider

a first-order AR model given by x(n) = a x(n − 1) + w(n),

with a = 1
2 . The noise w(n) was i.i.d. and drawn from a

zero-mean Gaussian distribution with variance σ2
w = 1 − 1

4 ,

so that σ2
x = 1. The noise z(n) was i.i.d. and drawn from a

zero-mean Gaussian distribution with variance σ2
z = 0.1. The

impulse response α∗ was given by

α∗ = [0.8 0.6 0.5 0.4 0.3 0.2 0.1 −0.1 −0.3 −0.6]�

(25)

Note that it contains negative entries in order to better test the

behavior of the algorithm. In this simulation, the parameter γ

was set to 3
7 , namely

α(n+ 1) = α(n) + η e(n)Dx(n)α
3
7

The initial impulse response α(0) was drawn from the uniform

distribution U([0; 1]), and kept unchanged for all the simula-

tions. Two step sizes η = 10−2 and η = 3×10−3 were tested.

The evolution of the mean value E{αi(n)} was determined

by

E{αi(n)} = E{v(n)}+α∗

The simulation result is shown in Fig. 2. The simulation

curves (blue line) were obtained from Monte Carlo simulation

averaged over 100 realizations. The theoretical curves (red

line) were obtained from the models. One can notice that all

the curves are perfectly superimposed.

The excess mean square error of these simulations are

shown in Fig. 3. The theoretical results were obtained by

Jemse = trace{Rx K(n)} with K(n) calculated recursively

by (16). Again one can notice that all the curves are perfectly

superimposed.

B. Comparison with NN-LMS

We then compared NN-LMS and modified NN-LMS with

adjusted step sizes so that they reached the same steady state

error. The first order and second behavior of the two algorithms

are shown in the Fig. 4. It can be observed that in NN-LMS

algorithm small weights, especially those converging to zero,

have much slower convergence rates than the others. However,

unlike NN-LMS, our modified NN-LMS has more balanced

weight convergence rates. The modified algorithm also has

better faster convergence rate of excess mean square error than

the original one. The comparison shows the advantage of the

modified algorithm.

V. CONCLUSION

Non-negativity is a desired constraint that can be imposed

on the parameters to estimate in order to avoid physically

absurd and uninterpretable results. In this paper, we derived a

modified NN-LMS algorithm in order to alleviate the unbal-

anced weight convergence rates of the original NN-LMS. We

also proposed analytical models to characterize the stochastic

behavior of this algorithm. Simulation illustrated the accuracy

of the model and its advantage over the original algorithm.

In future research efforts, we intend to further explore other

variants of NN-LMS algorithm to adapt different practical

requirement.
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Fig. 2. Convergence of the coefficients αi(n) for the modified NN-LMS, in the case of correlated input x(n). Two different step sizes

are considered: η = 10−2 on the left, and η = 3 · 10−3 on the right. The theoretical curves (red line) obtained from the model (13) and

simulation curves (blue line) are perfectly superimposed.
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Fig. 3. Corresponding convergence of Jemse(n) of the modified NN-LMS in these experiments. The theoretical curves (red line) were

obtained with the model (16).
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Fig. 4. Comparison of NN-LMS and modified NN-LMS. Left: first-order performance. The modified algorithm has a more balanced weight

convergence rate. Right: Excess mean square error.
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