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Distributed camera networks play an important role in public security surveillance. Analyzing video sequences from cameras set at
different angles will provide enhanced performance for detecting abnormal events. In this paper, an abnormal detection algorithm is
proposed to identify unusual events captured bymultiple cameras.The visual event is summarized and represented by the histogram
of the optical flow orientation descriptor, and then a multikernel strategy that takes the multiview scenes into account is proposed
to improve the detection accuracy. A nonlinear one-class SVM algorithm with the constructed kernel is then trained to detect
abnormal frames of video sequences. We validate and evaluate the proposed method on the video surveillance dataset PETS.

1. Introduction

Detecting abnormal events via video sequence analysis is
crucial for public security management. Compared with the
single camera setting, distributed camera networkswith over-
lapping views are capable of obtaining additional information
for surveilling the movement of the crowds. We illustrate
a multicamera setting with the performance evaluation of
tracking and surveillance (PETS) dataset [1]. This dataset
was collected for testing existing or new systems for the
detection of one or more of 3 types of crowd surveillance
characteristics/events within a real-world environment. The
scenarios are filmed from multiple cameras and involve up
to approximately forty actors. The scene and the camera
locations are shown in Figure 1. Several normal and abnormal
scenes from different angles of view are shown in Figure 2. In
Figures 2(a), 2(c), and 2(e), people were walking in random
directions, which are considered to be normal. In Figures
2(b), 2(d), and 2(f), people were walking or running in
the same direction. This group behavior implies that they
were attracted by some particular events. Consequently, these
scenes are considered to be abnormal. Note that the scenes
were captured by different cameras. Figures 2(a) and 2(b)
were captured by camera 1 which was set at the side of the

road, and themovement of the people can be easily identified.
Figures 2(c) and 2(d) were captured by camera 2 which
was set towards the movement direction of the people, with
occlusion of the individuals existing in this view. Figures 2(e)
and 2(f) were captured by camera 3 which was also set at the
side of the road, but with larger distance. The purpose of the
distributed camera surveillance is to detect abnormal events
by benefitting from information conveyed by the multiview
video sequences. Distributed camera networks are currently
widely used for security surveillance applications.

In the literature [2, 3], the framework for multiple
pedestrian tracking by using overlapping cameras was pre-
sented. In [4], several major challenges in distributed video
processing, including robust and computationally efficient
inference and opportunistic and parsimonious sensing, were
discussed. This progress is coupled with the fact that large-
scale video networks start to play an important rule for video
surveillance, object recognition, abnormal event detection,
and people tracking in crowd environments. Modeling the
movement feature of pixels is fundamental for detecting the
abnormal event. In [5], a method that tracked the local
spatiotemporal interest points was proposed, and the abnor-
mal activity was indicated by uncommon energy-velocity of
the feature points. In [6], a spatiotemporal descriptor was
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Figure 1: The plan of the multicamera localizations in PETS dataset. Three cameras are set in the campus as marked.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Examples of the normal and abnormal scenes captured by distributed cameras of PETS dataset. (a, c, e) The people are walking in
different directions, the normal scenes of Time 14–55 sequence; (b, d, f) the people are walking in the same direction, the abnormal scenes of
Time 14–17 sequence; (a, b) scenes captured by camera 1; (c, d) scenes captured by camera 2; (e, f) scenes captured by camera 3.
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Figure 3: Histogram of the optical flow orientation (HOFO) feature descriptor of the image.

computed based on computing the histograms of optical
flow in the neighborhood of detected points. In [7], dense
points were sampled from each frame and were tracked
based on displacement information from an optical flowfield.
But for the crowd event analysis, it is difficult to obtain
the predetected pixels of the blob due to the occlusion of
the individuals. In order to deal with the uncertainty of
observations existing in video events, Bayesian modeling
approaches such as hierarchical Dirichlet processes were used
in [8], and probabilistic latent semantic analysis was used
in [9]. A method based on the variable-duration hidden
Markov model was proposed in [10], where the durations
of states were modeled except for the transitions between
states, and the temporal understanding of the structure
of complex events was tackled. Latent Dirichlet allocation
(LDA) was also a typical standard topic model which was
used to model video clips as being derived from a bag of
topics drawn from a fixed set of proportions [11]. In [12], the
covariancematrix descriptor fusing the optical flow to encode
moving information of a frame was presented. In the above
literature, feature extraction methods and event models were
intensively studied for abnormal detection; however, only
single view video sequences were considered in the analysis.
Abnormal event detection via distributed camera networks is
an emerging problem and attracts researchers to investigate.
In this paper, we propose an abnormal detection algorithm
to identify unusual events captured by multiple cameras. The
visual event is represented by the histogram of the optical
flow orientation descriptor and then a nonlinear one-class
SVM algorithm using a multikernel strategy that takes the
multiview scenes into account is proposed to improve the
detection accuracy. Simulation will illustrate the effectiveness
of the proposed scheme.

The rest of the paper is organized as follows. In Section 2,
the optical flow-based feature for video analysis is introduced.
In Section 3, the abnormal detection framework based on
one-class SVM classification method is presented, and then
a multikernel strategy is proposed to deal with the abnormal
event detection problem for distributed camera networks.
In Section 4, the experimental results are illustrated and

discussed. Finally, Section 5 concludes the paper and gives a
perspective of future work.

2. Feature Selection for Abnormal Detection

The proposal by Horn-Schunck (HS) has been chosen to
compute the optical flow for the representation of the
movement information. The HS method formulates the
optical flow as a global energy functional for the gray image
sequence:
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)
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where 𝐼
𝑥
, 𝐼
𝑦
, and 𝐼

𝑡
are the derivatives of the image intensity

values along the horizontal direction 𝑥, vertical direction 𝑦,
and time 𝑡 dimension, respectively, 𝑢 and V are the horizontal
and vertical optical flow, and 𝛼 is a regularization constant.

Based on the optical flow, the histogramof the optical flow
orientation (HOFO) [13] is computed to fuse the movement
information as a high dimension vector. A 2 × 2 rectangular
cell HOFO descriptor of the image is shown in Figure 3. The
orientation is computed by horizontal and vertical optical
flow and then it is voted into 𝑛 bins. The number of bins 𝑛

is set to 9 in this work. Each cell contains ℎ
𝑐
pixels in height

dimension and𝑤
𝑐
in width dimension.Their values are set to

a half of the image size. A block contains ℎ
𝑏
× 𝑤
𝑏
cells, and it

is fixed to be 2 × 2 in this work.

3. One-Class SVM with Multiple Kernels

In practice, most data belong to the normal frames of video
sequences. It is reasonable to assume that these data lie in
the high density zone of the underlying data distribution.
Data of an abnormal frame will appear as an outlier of this
data distribution.Thus, one-class classificationmethods, such
as OCNM (one-class neighbor machine) and OCSVM (one-
class support vector machine), are appropriate to deal with
the abnormal event detection problem, by checking whether
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a data point lies in the characteristic region constructed with
normal data. Specifically, in the literature [14–16], OCNM
which asymptotically converges to the exact minimum vol-
ume set was proposed. Because the suboptimal performance
of OCSVMmay arise from the fact that its decision function
is not based on the use of neighborhood measures, the
OCNM performs consistently better than OCSVM. In this
paper we focus on verifying the advantage of using the feature
representation of an action from multiview cameras. Thus,
the OCSVM is chosen as a baseline in this paper. OCNM,
which potentially has more competent performance, will be
studied as a future work.

The problem of nonlinear one-class SVM [17, 18] can be
cast as a quadratic programming problem:

min
𝜔,𝜉,𝜌

1

2
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where x
𝑖

∈ X with 𝑖 = 1, . . . , 𝑛 are the training samples
in the original data space X and 𝜉

𝑖
is the slack variable

for penalizing the outliers. The hyperparameter ] ∈ (0, 1]

is the weight for controlled slack variable and it tunes the
number of acceptable outliers. The decision hyperplane is
described by ⟨w, Φ(x

𝑖
)⟩ − 𝜌 = 0. Nonlinear function Φ

maps the input dataX into a high dimensional feature space
H, where linear algorithms are supposed to be available for
classification. The inner product in space H is defined by
the kernel function 𝜅(x
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TheGaussian kernel is chosen to handle movement feature in
this work. It is a semipositive definite kernel that satisfies the
Mercer condition [19, 20] and is defined by
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where x
𝑖
, x
𝑗
are the data in the original data spaceX and the

bandwidth 𝜎 indicates the scale at which the data should be
clustered.

For constructing a more representative and discrimina-
tive feature descriptor for distributed camera networks, we
take the scene captured by each view as a partial feature.
The multikernel strategy considers a linear combination of
candidates kernels:
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where 𝜅
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with 𝑠 = 1, . . . , 𝑚 are 𝑚 candidate kernels that

satisfy the Mercer condition and 𝜇
𝑠
are nonnegative factors.

Consequently, their combination 𝜅 is also a semipositive
definite kernel. In this expression, the Gaussian kernel is
adopted with
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where 𝑖
[𝑠]
denotes the 𝑖th event which ismonitored by the𝑚th

camera. For example, in a distributed camera network with 4
cameras, the complete feature descriptor x

1
is a set of 4 parts

[x
11
, x
12
, x
13
, x
14
].

For a given scene monitored by multiple cameras, sup-
pose we can obtain a set of training frames. Based on the one-
class SVM hypothesis, the abnormal behavior is the sample
deviating from the training set. Take the plaza monitored by
the three cameras shown in Figure 2; for example, if 𝑠 = 1, the
frame captured by camera 1 is selected. We preset the weight
𝜇
𝑠
according to the characteristics of the image to tune the

importance of each view. By considering this combination,
we will find that the resulting kernel outperforms each indi-
vidual kernel 𝜅

𝑠
. Based on the histogram of the optical flow

orientation feature descriptor and the nonlinear one-class
SVM, the abnormal event detection method is summarized
in Algorithm 1 and explained in the following.

Algorithm 1 (abnormal event detection algorithm).
Input. Image set captured by the cameras.

Algorithm. (1) Compute the optical flow of the training frame
set [𝐼

V𝑖
1
, . . . , 𝐼

V𝑖
𝑚
], where V

𝑖
means the scene is monitored by

camera 𝑖 via the HS optical flow method:
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1
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] 󳨀→ [𝑂
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, 𝑂

V𝑖
2
, . . . , 𝑂

V𝑖
𝑚
] . (7)

(2) Compute the histogram of the optical flow orientation
(HOFO) of the image in different views:

[𝑂
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1
, 𝑂

V𝑖
2
, . . . , 𝑂

V𝑖
𝑚
] 󳨀→ [𝐻
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1
, . . . , 𝐻
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𝑚
] . (8)

(3) Construct the feature samples of the image 𝑘 under 𝑐
for the distributed camera network:

𝐻
𝑘
= [𝐻

V1
𝑘
, 𝐻

V2
𝑘
, . . . , 𝐻

V𝑐
𝑘
] . (9)

(4) Obtain the support vectors by training the feature
samples with nonlinear one-class SVMmethod:

[𝐻
1
, . . . , 𝐻

𝑚
] 󳨀→ support vector [𝑆V𝑖

1
, . . . , 𝑆

V𝑖
𝑚1

] . (10)

(5) Each incoming frame 𝐻
𝑝,...,𝑞

is classified by the
decision function of one-class SVM.

(6) The normal event or abnormal event is detected.

Step 1. The optical flow feature is computed. The training
frame set [𝐼V𝑖

1
, . . . , 𝐼

V𝑖
𝑚
]monitored by themulticamera network

describing the normal behavior is available. 𝐼V𝑖
𝑗
means that



International Journal of Distributed Sensor Networks 5

Detect: normal

(a)

Detect: abnormal

(b)

Detect: normal

(c)

Detect: abnormal

(d)

Detect: normal

(e)

Detect: abnormal

(f)

Figure 4: Detection results of the normal and abnormal scenes of Time 14–17 captured by distributed camera network. (a, c, e)The detection
results of one normal frame. (b, d, f) The detection results of one abnormal frame.

the 𝑗th image is captured by the 𝑖th camera. Horn-Schunck
method is applied to acquire the optical flow feature.This step
can be presented as

[𝐼
V𝑖
1
, . . . , 𝐼

V𝑖
𝑚
] 󳨀→ [𝑂
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] , (11)

where [𝐼
V𝑖
1
, . . . , 𝐼

V𝑖
𝑚
] are 𝑚 training frames of the 𝑖th view and

[𝑂
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1
, 𝑂

V𝑖
2
, . . . , 𝑂

V𝑖
𝑚
] are the corresponding optical flows.

Step 2. The second step consists of calculating the histogram
of optical flow orientation (HOFO) of the training frames. It
can be generalized as

[𝑂
V𝑖
1
, 𝑂

V𝑖
2
, . . . , 𝑂

V𝑖
𝑚
] 󳨀→ [𝐻

V𝑖
1
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] , (12)

where [𝑂
V𝑖
1
, 𝑂

V𝑖
2
, . . . , 𝑂

V𝑖
𝑚
] are the optical flow of the training

frames captured by camera 𝑖. [𝐻
V𝑖
1
, . . . , 𝐻

V𝑖
𝑚
] are the cor-

responding histogram of optical flow orientation (HOFO)
feature.

Step 3. The third step consists of fusing the 1st to 𝑐th HOFO
feature into one high dimension feature vector. It is described
in the following equation:

𝐻
𝑘
= [𝐻

V1
𝑘
, 𝐻

V2
𝑘
, . . . , 𝐻

V𝑐
𝑘
] , (13)

where 𝐻
𝑘
is the feature vector fusing the multiview move-

ment information.𝐻V1
𝑘
is the HOFO feature of the 𝑘th image

in view 𝑖.
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Table 1: Comparison of the abnormal detection AUC values
with the single view and with the distributed cameras using the
multikernel strategy for sequence Time 14–17.

Strategy Area under ROC

Single view View 1 View 2 View 3
0.9036 0.7807 0.9270

Multiview (1) 0.9441
Multiview (2) 0.9643

Step 4. Nonlinear one-class SVM is applied to the training
frame HOFO descriptor in multiview to obtain the support
vectors. It is described as follows:

[𝐻
1
, . . . , 𝐻

𝑚
] 󳨀→ support vector [𝑆

1
, . . . , 𝑆

𝑚1
] , (14)

where [𝐻
1
, . . . , 𝐻

𝑚
] are the histogram of optical flow ori-

entation descriptors of the training frames under multiview
environment and [𝑆

1
, . . . , 𝑆

𝑚1
] are support vectors that are the

minority of the training vectors contributing to the decision
function.

Step 5. In the online detection phase, based on the support
vectors obtained in the training step, one-class SVM classifies
each incoming frame feature [𝐻

𝑝
, . . . , 𝐻

𝑞
]. The abnormal

event will be detected in an online manner.

4. Abnormal Events Detection Results

We then conduct experiments to evaluate the performance of
the one-class SVM classification method for abnormal frame
event detectionwith the distributed camera network from the
PETS dataset [1]. In the experiments of PETS [1] dataset, each
event is represented by 3 separate scenes; thus, the event is
described by a set of 3 separated HOFO features. We mark
the use of these three features as “3 HOFO,” while we mark
the use of a single feature as “1 HOFO.” If the multikernel
strategy is used, wemark it as “3 kernels”; otherwise, wemark
the single kernel strategy as “1 kernel.”The detection accuracy
of the detection results are shown for the experiments.

The normal and abnormal events of sequence Time 14–
17 in the PETS dataset are shown in Figure 4. The training
samples and the normal samples for testing are the frames
in 3 views chosen from the sequence (Time 14–55) where
the people were walking in different directions. 400 training
frames (Frame0000 to Frame0399) and 90 normal testing
frames (Frame0400 to Frame0489) were selected from Time
14–55. The abnormal testing samples were selected from the
sequence (Time 14–17) where the people were walking or
running in the same direction. 89 abnormal testing frames
(Frame0000 to Frame0089) were selected from Time 14–17.

In the experiments, the parameters of the one-class SVM,
] and 𝜎, were selected from a set of preassigned values to
plot the ROC (receiver operating characteristic curve) and
comparing the AUC (area under the curve) values from the
curves. The AUC value of the abnormal detection results in
different views and different multikernel strategies are shown
in Table 1. “Single view” means “1 HOFO 1 kernel” strategy,

ROC Time14/17 SVM
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Multiview (2)
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Figure 5: ROC of abnormal detection results of sequence Time 14–
17 under different views and different kernel strategies.

and “multiview”means “3 HOFO 3 kernels.” “View 1” denotes
the scene that was monitored by camera 1, and the abnormal
detection results are shown in Figures 4(a) and 4(b). “View
2” denotes the scene that was monitored by camera 2, as
shown in Figures 4(c) and 4(d). “View 3” denotes the scene
that was monitored by camera 3, as shown in Figures 4(e)
and 4(f). “Multiview (1)” denotes the multikernel strategy
with the parameter setting 𝜇

1
= 0.5, 𝜇

2
= 0.2, 𝜇

3
= 0.3.

“Multiview (2)” denotes the multikernel strategy with 𝜇
1

=

1/3, 𝜇
2

= 1/3, 𝜇
3

= 1/3. The ROC of Time 14–17 results is
shown in Figure 5. Clearly, selection of coefficients 𝜇

𝑠
has an

impact on the abnormal detection performance. In this work,
these parameters were manually assigned according to the
importance of the views and the camera locations.

View 2 has the lowest area under the ROC, for the
reason that camera 2 faces the movement direction of the
crowds, and the occlusion influences the computation of the
optical flow. Thus, the HOFO feature based on the optical
flow cannot represent the accurate movement information.
The results show that the abnormal detection algorithm
of HOFO feature can obtain satisfactory detection results.
Moreover, the multikernel strategy can generally improve the
performance.

The experiment detecting the running activity as the
abnormal event is shown in Figures 6 and 7. The normal
event corresponds to the frames where the people were
walking. The training data are selected from the sequence
(Time 14–17 and Time 14–31) in PETS dataset where the
individuals werewalking in one direction. In this experiment,
61 frames (Frame0000 to Frame0060) where people were
walking from left to right in sequence Time 14–17 and 50
frames (Frame0000 to Frame0049) where the individuals
were walking from right to left in sequence Time 14–31 are
chosen as training samples. Correspondingly, 104 normal
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Figure 6: Detection results of the normal and abnormal scenes of Time 14–16 captured by the distributed camera network: the individuals
are moving from right to left. (a, c, e) The detection result of one normal frame: the individuals are walking in one direction. (b, d, f) The
detection result of one abnormal frame: the individuals are running in one direction.

samples and 118 abnormal frames in sequence Time 14–16 are
detected. The abnormal detection performance is improved
by multikernel strategy also.The AUC values of the detection
results are shown in Table 2.

5. Conclusions

In this paper, we have proposed a method for abnormal
frame event detection with distributed camera networks.The
histogram of optical flow was computed as the descriptor to
represent the movement of a frame. A multikernel strategy
was presented to benefit from multiple views captured by
the distributed camera network. The benchmark dataset
PETS has been tested to demonstrate the effectiveness of the
proposed algorithm.

Table 2: The abnormal detection results of sequence Time 14–16.
The comparison of the abnormal frame event detection results in
single view scene and in distributed camera scenes via multikernel
strategies.

Strategy Area under ROC

Single view View 1 View 2 View 3
0.8637 0.8071 0.9205

Multiview (1) 0.9312
Multiview (2) 0.9403

In the future work, the optimal coefficients of the mul-
tikernel strategy should be obtained automatically based on
the scene, while these parameters were preset according to
the importance of each view in the current work. Additional
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Detect: walk

(a)

Detect: run

(b)
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(c)
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Detect: run

(f)
Figure 7: Detection results of the normal and abnormal scenes of Time 14–16 captured by the distributed camera network: the individuals
are moving from left to right. (a, c, e) The detection result of one normal frame: the individuals are walking in one direction. (b, d, f) The
detection result of one abnormal frame: the individuals are running in one direction.

application scenarios, such as single person action recogni-
tion or action tracking inmultiview scenes, will be considered
to show the advantages of distributed camera networks.
Finally, advanced one-class classification techniques such
as OCNM will also be investigated for the video anomaly
detection.
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[6] H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid,
“Evaluation of local spatio-temporal features for action recog-
nition,” in Proceedings of the British Machine Vision Conference
(BMVC ’09), September 2009.
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