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We propose an algorithm to handle the problem of detecting abnormal events, which is a challenging but important subject in
video surveillance. The algorithm consists of an image descriptor and online nonlinear classification method. We introduce the
covariance matrix of the optical flow and image intensity as a descriptor encoding moving information. The nonlinear online
support vector machine (SVM) firstly learns a limited set of the training frames to provide a basic reference model then updates the
model and detects abnormal events in the current frame. We finally apply the method to detect abnormal events on a benchmark
video surveillance dataset to demonstrate the effectiveness of the proposed technique.

1. Introduction

Visual surveillance is one of the major research areas in
computer vision. In a crowd image analysis problem, the
scientific challenge includes abnormal events detection. For
instance, Figure 1(a) illustrates a normal scene where the
people are walking. In Figure 1(b), all the people are suddenly
running in different directions. This dataset imitates panic-
driven scenes.

Trajectory analysis of objects was described in [1–3]. The
moving object was labeled by a blob in consecutive frames,
and then a trajectory was produced. The deviation from the
learnt trajectories was defined as abnormal events. Tracking
based approaches are suitable for the sparse scenes with a few
objects. The target might be lost due to occlusion.

In [4, 5], abnormal detection approaches which used fea-
tures encoding motion, texture, and size of the objects were
introduced. Local image regions in a video were analyzed by
employing background subtraction method; then a dynamic
Bayesian network (DBN) was constructed to model normal
and abnormal behavior, and finally a likelihood ratio test
was applied to detect abnormal behaviors. In [6], a space-
time Markov random field (MRF) model which detected
abnormal activities in a video was proposed, mixture of
probabilistic principal component analyzers (MPPCA) was
adopted to model local optical flow. The prediction is based

on probabilistic assumption techniques where an accurate
model exists, but there are various situations where a robust
and tractablemodel cannot be obtained; model-freemethods
are needed to be studied.

Spatiotemporal motion features described by the context
of bag of video words were adopted to detect abnormal
events. In [7], the authors presented an algorithm which
monitored optical flow in a set of fixed spatial positions,
and constructed a histogram of optical flow. The likelihood
of the behavior in a new coming frame concerning the
probability distribution of the statistically learning behavior
was computed. If the likelihood fell below a preset threshold,
the behavior was considered as abnormal. In [8], irregular
behavior of images or videos was detected by an inference
process in a probabilistic graphical model. In [9, 10], the
video pixels were densely sampled to form the feature. These
methods are based on the partial information of images, such
as small blocks in a frame, without fully exploiting the global
information of the feature. In [11–13], spatiotemporal features
modeled motion regions of the frame as background, and
anomaly was detected by subtracting the newly sample to the
background template. These works are similar to the change
detection method when the background is not stable.

In this paper, the proposed algorithm is composed of two
parts. Firstly, a covariance feature descriptor is constructed
over the whole video frame, and then a nonlinear one-class
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support vector machine algorithm is applied in an online
fashion in order to detect abnormal events. The features
are extracted based on the optical flow which presents the
movement information. Experiments of real surveillance
video dataset show that our online abnormal detection tech-
niques can obtain satisfactory performance. The rest of the
paper is organized as follows. In Section 2, covariance matrix
descriptor of motion feature is introduced. In Section 3, the
online one-class SVM classification method is presented. In
Section 4, two abnormal detection strategies based on online
nonlinear one-class SVM are proposed. In Section 5, we
present results of real-world video scenes. Finally, Section 6
concludes the paper.

2. Covariance Descriptor of Frame Behavior

The optical flow is a feature which presents the direction
and the amplitude of a movement. It can provide important
information about the spatial arrangement of the objects and
the change rate of this arrangement [14]. We adopt Horn-
Schunck (HS) optical flow computation method in our work.
The optical flow of the gray scale image is formulated as the
minimizer of the following global energy functional:

𝐸 = ∬[(𝐼
𝑥
𝑢 + 𝐼
𝑦
V + 𝐼
𝑡
)
2

+ 𝛼
2

(‖∇𝑢‖
2

+ ‖∇V‖2)] 𝑑𝑥𝑑𝑦, (1)

where 𝐼 is the intensity of the image, 𝐼
𝑥
, 𝐼
𝑦
, and 𝐼

𝑡
are the

derivatives of the image intensity value along the 𝑥, 𝑦, and
time 𝑡 dimension, 𝑢 and V are the components of the optical
flow in the horizontal and vertical direction, and 𝛼 represents
the weight of the regularization term.

We introduce the covariance matrix encoding the optical
flow and intensity of each frame as the descriptor to represent
themovement.The covariance feature descriptor is originally
proposed by Tuzel et al. [15] for pattern matching in a target
tracking problem. The descriptor is defined as

𝐹 (𝑥, 𝑦, 𝑖) = 𝜙
𝑖
(𝐼, 𝑥, 𝑦) , (2)

where 𝐼 is the color information of an image (which can be
gray, RGB, HSV, HLS, etc.), 𝜙

𝑖
is a mapping relating the image

with the 𝑖th feature from the image, 𝐹 is the 𝑊 × 𝐻 × 𝑑

dimensional feature extracted from image 𝐼,𝑊 and𝐻 are the
image width and image height, and 𝑑 is the number of chosen
features. For each frame, the feature can be represented as
𝑑 × 𝑑 covariance matrix:

C =
1

𝑛 − 1

𝑛

∑

𝑘=1

(z
𝑘
− 𝜇) (z

𝑘
− 𝜇)
⊤

, (3)

where 𝑛 is the number of the pixels sampled in the frame,
z
𝑘
is the feature vector of pixel 𝑘, 𝜇 is the mean of all the

selected points, and C is the covariance matrix of the feature
vector 𝐹. The covariance descriptor C of each frame dose not
have any information regarding the sample ordering and the
number of points [15]. Because the feature 𝐹 can be designed
as different approaches to fuse features, the covariancematrix
descriptor proposes a way to merge multiple parameters.
Different choices of feature vectors extraction are shown in

Table 1: Different choices of feature 𝐹 to construct the covariance
descriptor.

Feature vector 𝐹
𝐹
1
(6 × 6) [𝑦 𝑥 𝑢 V 𝑢

𝑥
𝑢
𝑦
]

𝐹
2
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𝑥
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]
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𝑥
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]
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]
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𝑥
𝑢
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V
𝑥
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]

Table 1, where 𝐼 is the intensity of the gray image, 𝑢 and V
are horizontal and vertical components of optical flow, 𝐼

𝑥
,

𝑢
𝑥
, and V

𝑥
are the first derivatives of the intensity, horizontal

optical flow, and vertical optical flow in the 𝑥 direction
respectively, 𝐼

𝑦
, 𝑢
𝑦
, and V

𝑦
are the first derivatives of the

corresponding feature in the 𝑦 direction and respectively,
𝐼
𝑥𝑥
, 𝑢
𝑥𝑥
, and V

𝑥𝑥
are the second derivatives in 𝑥 direction,

𝐼
𝑦𝑦
, 𝑢
𝑦𝑦
, and V

𝑦𝑦
are the second derivatives in 𝑦 direction.

The flowchart of covariance matrix descriptor computation
is shown in Figure 2. The optical flow and corresponding
partial derivative characterize the interframe information or
can be regarded as the movement information. The intensity
of the frame and partial derivative of the intensity describe
the intraframe information; they encode the appearance
information of the frame.

If proper parameters are given, the traditionally used
kernel, such as Gaussian, polynomial, and sigmoidal kernel,
has similar performances [19]. Gaussian kernel 𝜅(x

𝑖
, x
𝑗
) =

exp(−‖x
𝑖
− x
𝑗
‖
2

/2𝜎
2

) is chosen for our spatial features. The
covariance matrix is an element in Lie group; the Gaussian
kernel on the Euclidean spaces is not suitable for the covari-
ance descriptors.TheGaussian kernel in Lie Group is defined
as [20, 21]:
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𝑖
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𝑖
,X
𝑗
) ∈ 𝐺 × 𝐺,

(4)

where X
𝑖
and X

𝑗
are matrices in Lie Group 𝐺.

3. Online One-Class SVM

The essence of an abnormal detection problem is that only
normal scene samples are available. The one-class SVM
framework is well suitable to an abnormal detection problem.
Support vector machine (SVM) is initially proposed by
Vapnik and Lerner [22, 23]. It is a method based on statistical
learning theory and has fine performance to classify data and
recognize patterns. There are two frameworks of one-class
SVM, one is support vector data description (SVDD) which
is presented in [24, 25] and the other is ]-support vector
classifier (]-SVC) introduced in [26].The SVDD formulation
is adopted in our work. It computes a sphere shaped decision
boundary with minimal volume around a set of objects. The
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(a) Normal lawn scene (b) Abnormal lawn scene

Figure 1: Examples of the normal and abnormal scenes: (a) Normal lawn scene: all the people are walking. (b) Abnormal lawn scene, all the
people are running.

Consecutive frame
Framei

Framei+1

Optical flow field OPi

Features

F(x, y, j)

j = 1, 2, . . . , n
Cframe𝑖

Figure 2: Covariance descriptor computation of a video frame.

center of the sphere c and the radius 𝑅 are to be determined
via the following optimization problem:

min
𝑅,𝜉,𝑐

𝑅
2

+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖
, (5)

subject to 󵄩󵄩󵄩󵄩Φ (x
𝑖
) − c󵄩󵄩󵄩󵄩

2
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2

+ 𝜉
𝑖
, 𝜉
𝑖
≥ 0, ∀𝑖, (6)

where 𝑛 is the number of training samples and 𝜉
𝑖
is the

slack variable for penalizing the outliers.The hyperparameter
𝐶 is the weight for restraining slack variables; it tunes
the number of acceptable outliers. The nonlinear function
Φ : X → H maps a datum x

𝑖
into the feature space

H; it allows to solve a nonlinear classification problem by
designing a linear classifier in the feature space H. 𝜅 is the
kernel function for computing dot products inH, 𝜅(x, x󸀠) =
⟨Φ(x), Φ(x󸀠)⟩. By introducing Lagrange multipliers, the dual

problem associated with (6) is written by the following
quadratic optimization problem:
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(7)

The decision function is

𝑓 (x) = sgn(𝑅2 −
𝑛

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝜅 (x
𝑖
, x
𝑗
)

+ 2

𝑛

∑

𝑖=1

𝛼
𝑖
𝜅 (x
𝑖
, x) − 𝜅 (x, x)) .

(8)

For the large training data, the solution cannot be
obtained easily, and an online strategy to train the data is
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used in our work. Let cD denotes a sparse model of the center
c
𝑛
= (1/𝑛)∑

𝑛

𝑖=1
Φ(x
𝑖
) by using a small subset of available

samples which is called dictionary:

cD = ∑

𝑖∈D

𝛼
𝑖
Φ(x
𝑖
) , (9)

whereD ⊂ {1, 2, . . . , 𝑛}, and let𝑁D denote the cardinality of
this subset xD. The distance of a mapped datum Φ(x) with
respect to the center cD can be calculated by

󵄩󵄩󵄩󵄩Φ (x) − cD
󵄩󵄩󵄩󵄩 = ∑
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)
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𝛼
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𝑖
, x) + 𝜅 (x, x) .

(10)

A modification of the original formulation of the one-
class classification algorithm that consists of minimizing the
approximation error ‖c

𝑛
− cD‖ is [27, 28]

𝛼 = arg min
𝛼𝑖,𝑖∈D

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛

𝑛

∑

𝑖=1

Φ(x
𝑖
) − ∑

𝑖∈D

𝛼
𝑖
Φ(x
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
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The final solution is given by

𝛼 = K−1𝜅, (12)

where K is the Grammatrix with (𝑖, 𝑗)th entry 𝜅(x
𝑖
, x
𝑗
) and 𝜅

is the column vector with entries (1/𝑛)∑𝑛
𝑖=1

𝜅(x
𝑘
, x
𝑖
), 𝑘 ∈ D.

In the online scheme, at each time step there is a new
sample. Let 𝛼

𝑛
denote the coefficients, K

𝑛
denote the Gram

matrix, and 𝜅
𝑛
denote the vector, at time step 𝑛. A criterion is

used to determine whether the new sample can be included
into the dictionary. A threshold 𝜇

0
is preset, for the datum

x
𝑡
at time step 𝑡, the coherence-based sparsification criterion

[29, 30] is

𝜖
𝑡
= max
𝑖∈D

󵄨󵄨󵄨󵄨𝜅 (x𝑖, x𝑡)
󵄨󵄨󵄨󵄨 . (13)

First Case (𝜖
𝑡
> 𝜇
0
). In this case, the new data Φ(x

𝑛+1
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included into the dictionary.The GrammatrixK
𝑛+1

= K
𝑛
. 𝜅
𝑛

changes online:

𝜅
𝑛+1

=
1
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𝑛
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𝛼
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𝑛
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𝛼
𝑛
+

1
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K−1
𝑛
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(14)

where b is the column vector with entries 𝜅(x
𝑖
, x
𝑛+1

), 𝑖 ∈ D.

Second Case (𝜖
𝑡
≤ 𝜇
0
). In this case, the new data Φ(x

𝑛+1
) is

included into the dictionaryD. The Grammatrix K changes:

K
𝑛+1

= [

[

K
𝑛

b
b⊤ 𝜅 (x

𝑛+1
, x
𝑛+1

)
]

]

. (15)

By using Woodbury matrix identity

(𝐴 + 𝑈𝐶𝑉)
−1

= 𝐴
−1

− 𝐴
−1

𝑈(𝐶
−1

+ 𝑉𝐴
−1

𝑈)
−1

𝑉𝐴
−1

, (16)

K−1
𝑛+1

can be calculated iteratively:

K−1
𝑛+1

= [

[

K−1
𝑛

0
0⊤ 0

]

]

+
1

𝜅 (x
𝑛+1

, x
𝑛+1
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𝑛
b

× [

[

−K−1
𝑛
b

1
]

]
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𝑛
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(17)

The vector 𝜅
𝑛+1

is updated from 𝜅
𝑛
,

𝜅
𝑛+1

=
1

𝑛 + 1
[
𝑛𝜅
𝑛
+ 𝑏⃗
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with

𝜅
𝑛+1
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∑
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𝜅 (x
𝑛+1

, x
𝑖
) . (19)

Computing 𝜅
𝑛+1

as (19) needs to save all the samples {x}𝑛+1
𝑖=1

in
memory. For conquering this issue, it can compute as 𝜅

𝑛+1
=

(𝑛 + 1)𝜅(x
𝑛+1

, x
𝑛+1

) by considering an instant estimation.The
update of 𝛼

𝑛+1
from 𝛼

𝑛
is

𝛼
𝑛+1

=
1
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[
𝑛𝛼
𝑛
+ K−1
𝑛
b

0
]

−
1

(𝑛 + 1) (𝜅 (x
𝑛+1

, x
𝑛+1

) − b⊤K−1
𝑛
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× [

[

K−1
𝑛
b

1
]

]

(𝑛b⊤𝛼
𝑛
+ b⊤K−1

𝑛
b − 𝜅
𝑛+1

) .

(20)

Based on (20), we have an online implementation of the one-
class SVM learning phase.

4. Abnormal Events Detection

In an abnormal event detection problem, it is assumed
that a set of training frames {𝐼

1
, . . . , 𝐼

𝑛
} (the positive class)

describing the normal behavior is obtained. The general
architectures of abnormal detection are introduced below.

The offline training strategy refers to the case where all
the training samples are learnt as one batch, as shown in
Figure 3(a). We propose two abnormal detection strategies;
the difference between these two strategies is the time when
the dictionary is fixed. These two strategies are shown in
Figures 3(b) and 3(c). Strategy 1 is shown in Figure 3(b). The
training data are learnt one by one.When the training period
is finished, the dictionary and the classifier are fixed. Each
test datum is classified based on the dictionary. Figure 3(c)
illustrates Strategy 2. The training procedure is the same as
Strategy 1. But in the testing period, the dictionary is updated
if the datum x

𝑖
satisfies the dictionary update condition. The

details of these two strategies are explained in the following.
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Train offline

Test onlinem n − m

(a) Strategy offline

Test online

Train online

m n − m

Train

Dictionary fixed

(b) Strategy 1

Train

Dictionary fixed

Train and test online

Test onlinem n − m

(c) Strategy 2

Figure 3: Offline and two online abnormal event detection strategies based on one-class SVM. (a) Strategy offline.The training data are learnt
as one batch offline. (b) Strategy 1. The dictionary is fixed when all the training data are learnt. (c) Strategy 2. The dictionary continues being
updated through the testing period.
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...
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⋱

⋱

Figure 4: Major processing states of the proposed abnormal frame event detection method. The covariance of the frame is computed.
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4.1. Strategy 1. In Strategy 1, the dictionary is updated merely
through the training period.

Step 1. The first step is calculating the covariance matrix
descriptor of training frames based on the image intensity and
the optical flow. This step can be generalized as

{(𝐼
1
,OP
1
) , (𝐼
2
,OP
2
) , . . . , (𝐼

𝑛
,OP
𝑛
)} 󳨀→ {C

1
,C
2
, . . . ,C

𝑛
} ,

(21)

where {(I
1
,OP
1
), (I
2
,OP
2
), . . . , (𝐼

𝑛
,OP
𝑛
)} are the image

intensity and the corresponding optical flow of the 1st to 𝑛th
frame. {C

1
,C
2
, . . . ,C

𝑛
} are the covariance matrix descriptors.

Step 2. The second step consists of applying one-class SVM
on the small subset of extracted descriptor of the training
normal frames to obtain the support vectors. Consider a
subset {C

𝑖
}
𝑚

𝑖=1
, 1 ≤ 𝑚 ≪ 𝑛 of data selected from the full

training sample set {C
𝑖
}
𝑛

𝑖=1
, without loss of generality, and

assume that the first 𝑚 examples are chosen. This set of 𝑚
examples is called dictionary CD:

{C
1
,C
2
, . . . ,C

𝑚
} , 1 ≤ 𝑚 ≪ 𝑛

SVM
󳨀→ support vector {𝑆𝑝

1
, 𝑆𝑝
2
, . . . , 𝑆𝑝

𝑜
} ,

(22)

where the set {C
1
,C
2
, . . . ,C

𝑚
} is the first𝑚 covariancematrix

descriptors of the training frames; it is the original dictionary
CD. In one-class SVM, the majority of the training samples
do not contribute to the definition of the decision function.
The entries of a monitory subset of the training samples,
{𝑆𝑝
1
, 𝑆𝑝
2
, . . . , 𝑆𝑝

𝑜
}, 𝑜 ≤ 𝑚, are support vectors contributing

to the definition of the decision function.

Step 3. After learning the dictionary CD which includes
the first 𝑚, 1 ≤ 𝑚 ≪ 𝑛 samples, the training samples
{C
𝑚+1

,C
𝑚+2

, . . . ,C
𝑛
} are learned online via the technique

described in Section 3. This step can be generalized as

{CD,C𝑘} , 𝑚 < 𝑘 ≤ 𝑛
SVM
󳨀→ support vector {𝑆𝑝

1
, 𝑆𝑝
2
, . . . , 𝑆𝑝

𝑝
} ,

𝑜 ≤ 𝑝 ≤ 𝑛,

CD := CD ∪ C
𝑘
, if 𝜖

𝑡
≥ 𝜇
0
,

(23)

where CD is the dictionary obtained through Step 2, C
𝑘
is a

new sample in the remaining training dataset. According to
the criterion introduced in Section 3, if the new sample C

𝑘

satisfies the dictionary updated condition, it will be included
into the dictionary CD.

Step 4. Based on the dictionary and the classifier obtained
from the training frames, the incoming frame sample C

𝑛+𝑙
is

Table 2: AUC of abnormal event detection method of different
features 𝐹 via original SVDD which learns training samples offline,
Strategy 1 online one-class SVM, and Strategy 2 online one-class
SVM.The biggest value of each method is shown in bold.

Features Area under ROC
Lawn Indoor Plaza

Training samples are learned offline
𝐹
1
(6 × 6𝑑𝑢) 0.9426 0.8351 0.9323

𝐹
2
(6 × 6𝑑V) 0.9400 0.8358 0.9321

𝐹
3
(8 × 8) 0.9440 0.8375 0.9359

𝐹
4
(12 × 12) 0.9591 0.8440 0.9580

𝐹
5
(17 × 17) 0.9567 0.8649 0.9649

Strategy 1
𝐹
1
(6 × 6𝑑𝑢) 0.9399 0.8328 0.9343

𝐹
2
(6 × 6𝑑V) 0.9390 0.8355 0.9366

𝐹
3
(8 × 8) 0.9418 0.8377 0.9411

𝐹
4
(12 × 12) 0.9581 0.8457 0.9573

𝐹
5
(17 × 17) 0.9551 0.8628 0.9632

Strategy 2
𝐹
1
(6 × 6𝑑𝑢) 0.9427 0.8237 0.9288

𝐹
2
(6 × 6𝑑V) 0.9370 0.8241 0.9283

𝐹
3
(8 × 8) 0.9430 0.8274 0.9312

𝐹
4
(12 × 12) 0.9605 0.8331 0.9505

𝐹
5
(17 × 17) 0.9601 0.8495 0.9746

classified.Theworkflow of Strategy 1 is shown in Figure 4 and
described by the following equation:

𝑓 (C
𝑛+𝑙
) = sgn(𝑅2 −

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝜅 (C
𝑖
,C
𝑗
)

+ 2∑

𝑖

𝛼
𝑖
𝜅 (C
𝑖
,C
𝑛+𝑙
) − 𝜅 (C

𝑛+𝑙
,C
𝑛+𝑙
))

= {
1 𝑓 (C

𝑛+𝑙
) ≥ 0

−1 𝑓 (C
𝑛+𝑙
) < 0,

(24)

whereC
𝑛+𝑙

is the covariance matrix descriptor of the (𝑛+ 𝑙)th
frame needed to be classified and C

𝑖
and C

𝑗
are the samples

of the dictionary CD. “1” corresponds to the normal frame;
“−1” corresponds to the abnormal frame.

4.2. Strategy 2. In this strategy, the dictionary is updated
through both training and testing periods.The feature extrac-
tion step (Step 1) and the online training steps (Steps 2 and 3)
are the same as the ones presented in Strategy 1. The testing
step is different. The new coming datum which is detected
as normal but satisfies dictionary update condition should
be included into CD. The dictionary is needed to be updated
through the testing period to include new samples.

Step 4: Strategy 2. If the incoming frame sample C
𝑛+𝑙

is
classified as normal (𝑓(C

𝑛+𝑙
) = 1), the data is checked by

the criterion described in Section 3. When the data satisfies
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Figure 5: Detection results of the lawn scene. (a) The detection result of one normal frame. (b) The detection result of one abnormal panic
frame. (c) ROC curve of different features 𝐹 of the lawn scene results via one-class SVM. All the training samples are learned together offline.
The biggest AUC value is 0.9591. (d) ROC curve of different features 𝐹 results via Strategy 1 online one-class SVM.The biggest AUC value is
0.9581.

the dictionary update criterion, this testing sample will be
included into the dictionary. This step can be generalized by
the following equation:

𝑓 (C
𝑛+𝑙
) = sgn(𝑅2 −

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝜅 (C
𝑖
,C
𝑗
)

+ 2∑

𝑖

𝛼
𝑖
𝜅 (C
𝑖
,C
𝑛+𝑙
) − 𝜅 (C

𝑛+𝑙
,C
𝑛+𝑙
))

=

{

{

{

1 𝑓 (C
𝑛+𝑙
) ≥ 0 {

𝜖
𝑡
≥ 𝜇
0
󳨀→ CD := CD ∪ C

𝑛+𝑙

𝜖
𝑡
< 𝜇
0
󳨀→ CD := CD

−1 𝑓 (C
𝑛+𝑙
) < 0.

(25)

5. Abnormal Detection Result

This section presents the results of experiments conducted to
analyze the performance of the proposedmethod. A compet-
itive performance through both Strategy 1 and Strategy 2 of
UMN [31] dataset is presented.

5.1. Abnormal Visual Events Detection: Strategy 1. The results
of the proposed abnormal events detection method via
Strategy 1 online one-class SVM of UMN [31] dataset are
shown below.

The UMN dataset includes eleven video sequences of
three different scenes (the lawn, indoor, and plaza) of
crowded escape events. The normal samples for training or
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1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

False positive

Tr
ue

 p
os

iti
ve

ROC indoor offline

0.85

0.8

0.75

0.7

0.65

0 0.1 0.2 0.3 0.4

F1

F2

F3

F4

F5

(c) ROC train offline

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

False positive

Tr
ue

 p
os

iti
ve

ROC indoor Strategy 1

0.85

0.8

0.75

0.7

0.65

0 0.1 0.2 0.3 0.4

F1

F2

F3

F4

F5

(d) ROC Strategy 1

Figure 6: Detection results of the indoor scene. (a)The detection result of one normal frame. (b)The detection result of one abnormal panic
frame. (c) ROC curve of different features 𝐹 of the indoor scene results via one-class SVM. All the training samples are learned together
offline. The biggest AUC value is 0.8649. (d) ROC curve of different features 𝐹 results via Strategy 1 online one-class SVM.The biggest AUC
value is 0.8628.

Table 3: The comparison of our proposed method with the state-
of-the-art methods for the abnormal event detection in the UMN
dataset.

Method Area under ROC
Lawn Indoor Plaza

Social force [16] 0.96
Optical flow [16] 0.84
NN [17] 0.93
SRC [17] 0.995 0.975 0.964
STCOG [18] 0.9362 0.7759 0.9661
COV online (ours) 0.9605 0.8628 0.9746

for normal testing are the frames where the people are walk-
ing in different directions. The samples for abnormal testing
are the frames where people are running. The detection
results of the lawn scene, indoor scene, and plaza scene are
shown in Figures 5, 6, and 7, respectively. Gaussian kernel
for the Lie Group is used in these three scenes. Different
values of𝜎 and penalty factor𝐶 are chosen; the area under the
ROC curve is shown as a function of these parameters [32].
The results show that taking covariance matrix as descriptor
can obtain satisfactory performance for abnormal detection.
And also, training the samples online can obtain similarly
detection performance as training all the samples offline.
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(a) Normal plaza scene (b) Abnormal plaza scene
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Figure 7: Detection results of the plaza scene. (a) The detection result of one normal frame. (b) The detection result of one abnormal panic
frame. (c) ROC curve of different features 𝐹 of the plaza scene results via one-class SVM. All the training samples are learned together offline.
The biggest AUC value is 0.9649. (d) ROC curve of different features 𝐹 results via Strategy 1 online one-class SVM.The biggest AUC value is
0.9632.

Online one-class SVM is appropriate to detect abnormal
visual events. There are 1431 frames in the lawn scene, and
480 normal frames are used for training. In the offline strat-
egy, all the 480 frames covariancematrices should be saved in
thememory. In Strategy 1, 100 frames covariancematrices are
considered as the dictionary firstly.When𝐹

5
-17×17 feature is

adopted to construct the covariance descriptor, the variance
of Gaussian kernel is 𝜎 = 1, the preset threshold of the
criterion is 𝜇

0
= 0.5, the dictionary size increases from 100

to 101, and the maximum accuracy of the detection results
is 91.69%. In the indoor scene, there are 2975 normal frames
and 1057 abnormal frames. In the plaza scene, there are 1831
normal frames and 286 abnormal frames.Theprocesses of the
experiments are similar to the ones of the lawn scene. When
feature vector is 𝐹

5
-17 × 17, 𝜎 = 1, 𝜇

0
= 0.5, the dictionary

size of these two scenes remain 100.The online strategy keeps
the memory size almost unchanged when the size of training
dataset increases.

5.2. Abnormal Visual Events Detection: Strategy 2. The results
of the abnormal event detection method via Strategy 2 of
UMNdataset are shown as follows. In the experiment process
of the lawn scene, 100 normal samples from the training
samples are learnt firstly, and then the other 380 training
data are learnt online one by one. After these two training
steps, we can obtain the basic dictionary from the training
samples and also the classifier. In the following testing step,
the dictionary is updated if the sample satisfies the dictionary
update criterion. When a new sample is coming, it is firstly
detected by the previous classifier. If it is classified as anomaly,
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Figure 8: ROC curve of UMN dataset. (a) ROC curve of different features 𝐹 results via Strategy 2 of the lawn scene.The biggest AUC value is
0.9605. (b) Strategy 2 results of the indoor scene. The biggest AUC value is 0.8495. (c) Strategy 2 results of the plaza scene. The biggest AUC
value is 0.9746. (d)The ROC curve of best performance of the lawn, indoor, and plaza scene when the training samples are learnt offline.The
biggest AUC values of the lawn, indoor, and plaza are 0.9591, 0.8649 and 0.9649.

the dictionary and the classifier are not changed. Otherwise,
if the sample is classified as a normal one, the sparse criterion
introduced in Section 3 is used to check the correlation
between the earlier dictionary and this new datum. It will
be included into the dictionary when it satisfied the update
condition. The dictionary will be updated through the whole
testing period. The other two scenes, the indoor and plaza
scene, are handled by the same methods. When 𝐹

5
-17 × 17

feature is adopted, the variance of the Gaussian kernel is
𝜎 = 1, and the preset threshold of the criterion is 𝜇

0
= 0.5,

and the dictionary size of the lawn, indoor, and plaza scene

is increased from 100 to 106, 102, and 102, respectively. The
ROC curve of detection results of these three scenes is shown
in Figures 8(a), 8(b), and 8(c). Besides the merit of saving
memory of Strategy 1, Strategy 2 also has the advantage of
adaptation to the long duration sequence.

The results performances of offline strategy, Strategy 1,
and Strategy 2 are shown in Table 2. The performances of
these two strategies results are similar to that of the results
when all training samples are learnt together. When 𝐹

4
(12 ×

12) or𝐹
5
(17×17) are chosen as the features to formcovariance

matrix descriptor, the results have the best performance.
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These two features are more abundant to include movement
and intensity information.

The result performances of the covariancematrix descrip-
tor based online one-class SVM method and the state-of-
the-art methods are shown in Table 3. The covariance matrix
based online abnormal frame detection method obtains
competitive performance. In general, our method is better
than others except sparse reconstruction cost (SRC) [17]
in lawn scene and indoor scene. In that paper, multiscale
HOF is taken as a feature, and a testing sample is classi-
fied by its sparse reconstructor cost, through a weighted
linear reconstruction of the overcomplete normal basis set.
But computation of the HOF might takes more time than
calculating covariance. By adopting the integral image [15],
the covariance matrix descriptor of the subimage can be
computed conveniently. So the covariance descriptor can be
appropriately used to analyze the partial movement.

6. Conclusions

A method for the abnormal event detection of the frame
is proposed. The method consists of covariance matrix
descriptor encoding the movement features, and the online
nonlinear one-class SVM classification method. We have
developed two nonlinear one-class SVM based abnormal
event detection techniques that update the normal models
of the surveillance video data in an online framework. The
proposed algorithm has been tested on a video dataset
yielding successful results to detect abnormal events.
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