
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

DIFFUSION LMS FOR MULTITASK PROBLEMS
WITH OVERLAPPING HYPOTHESIS SUBSPACES

Jie Chen ?† Cédric Richard † Alfred O. Hero III ? Ali H. Sayed ‡

? University of Michigan, Ann Arbor, USA
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ABSTRACT

There are many important applications that are multitask-oriented in
the sense that there are multiple optimum parameter vectors to be
inferred simultaneously by networked agents. In this paper, we for-
mulate an online multitask learning problem where node hypothesis
spaces partly overlap. A cooperative algorithm based on diffusion
adaptation is derived. Some results on its stability and convergence
properties are also provided. Simulations are conducted to illustrate
the theoretical results.

Index Terms— Multitask learning, distributed optimization,
diffusion strategy, collaborative processing.

1. INTRODUCTION

Distributed adaptive learning strategies over networks enable agents
to learn a concept via local information exchange and through con-
tinuous adaptation, and continuously adapt to track possible drifts.
These strategies offer an attractive alternative to centralized solu-
tions with advantages related to scalability, robustness and decen-
tralization. Many application examples exist in the realm of so-
cial, economic and biological networks – see [1, 2] and the refer-
ences therein. Several distributed strategies for online parameter es-
timation have been proposed in the literature, including consensus
strategies [3–5], incremental strategies [6–9], and diffusion strate-
gies [10–15]. Incremental techniques require the determination of a
cyclic path that runs across all nodes, which is generally an NP-hard
problem. Besides, they are sensitive to link failures. On the other
hand, diffusion strategies have been shown to have superior stabil-
ity and performance ranges [16] than consensus-based implementa-
tions. Accessible overviews of results on diffusion adaptation can
be found in [2, 10, 11]. This literature focuses primarily, though not
exclusively [17–19], on the case where nodes estimate a single pa-
rameter vector collaboratively. We refer to problems of this type as
single-task problems. However, many problems of interest happen to
be multitask-oriented in that there are multiple parameter vectors to
be inferred simultaneously. Although these parameters are different
over the networks, they may have relationships that can be exploited
to improve estimation accuracy.
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Multitask learning has been studied by the machine learning
community in several contexts, including web page categoriza-
tion [20], web-search ranking [21], disease progression model-
ing [22], among other areas. This concept is also relevant in the
context of estimation over adaptive networks. Initial investigations
on multitask problems with diffusion strategies appeared in [17,23].
One useful way to exploit and model relationships among tasks
is to formulate optimization problems with appropriate regular-
izers. Several regularization schemes have been proposed in the
machine learning community, including mean regularization [24],
low-rank regularization [25], and clustered regularization [26]. The
works [27, 28] considered multitask networks composed of con-
nected clusters of nodes. In each cluster, agents collaboratively
estimate a local parameter vector. Co-regularization between neigh-
boring clusters was used to enhance estimation accuracy. An alter-
native strategy to model relationships between tasks is to assume
that the node hypothesis spaces partially overlap [29–31].

We build on this principle to address online distributed estima-
tion problems over multitask networks. Although this work is re-
stricted to the case where the overlap of node hypothesis subspaces is
known, we introduce a useful extension of diffusion adaption strate-
gies to multitask problems. We analyse its convergence properties in
the mean and mean-square senses. Finally, we provide an illustrative
example to verify the theoretical findings.

Notation. Small letters x denote scalars, and boldface small let-
ters x denote column vectors. Boldface capital letters R represent
matrices, and the superscript (·)> denotes matrix transpose. I

N

denotes the N ⇥ N identity matrix. N
k

denotes the neighbors of
node k, including k. The operator col{·} stacks its vector arguments
on the top of each other to generate a connected vector. The operator
diag{·} formulates a (block) diagonal matrix. Finally, ⌦ denotes the
Kronecker product, and vec{·} stacks the columns of a matrix on top
of each other into a vector.

2. MULTITASK LEARNING OVER NETWORKS

Consider a connected network composed of N nodes. The prob-
lem is to estimate an L ⇥ 1 unknown vector w?

k

at each node k

from collected measurements. Node k has access to local temporal
streaming measurement sequences {d

k,n

,x
k,n

}, with d

k,n

denoting
a zero-mean reference signal, and x

k,n

denoting an L⇥1 regression
vector with covariance matrix R

x,k

= E{x
k,n

x>
k,n

} > 0. The data
at node k are assumed to be related via the linear model:

d

k,n

= x>
k,n

w?

k

+ z

k,n

(1)
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where w?

k

is the unknown parameter vector at node k, and z

k,n

is a
zero-mean i.i.d. noise that is independent of every other signal and
has variance �

2
z,k

. Let J
k

(w) denote a convex cost function for data
fitting associated with node k. We consider the mean-square-error in
this paper:

J

k

(w) = E{|d
k,n

�w>x
k,n

|2} (2)

It can be verified from (1) that each J

k

(w) is minimized at w?

k

.
Depending on whether the minima of all J

k

(w) are achieved at the
same location or not, referred to as tasks, the distributed learning
problem can be single-task or multitask oriented [28].

In a single-task network, all nodes have to estimate the same
parameter vector w?. That is, in this case we have that

w?

k

= w?

, 8k 2 {1, . . . , N} (3)

Several popular cooperative strategies, such as diffusion [12, 13],
were derived for this scenario by seeking the minimizer of the fol-
lowing aggregate cost function:

J

glob(w) =
NX

k=1

J

k

(w) (4)

in a distributed manner. In a multitask network, on the other hand,
each node needs to determine its specific parameter vector w?

k

. It
will be assumed that some similarities or relationships exist among
the parameter vectors of neighboring nodes so that cooperation can
still be meaningful and useful, namely,

w?

k

6= w?

`

and w?

k

⇠ w?

`

if ` 2 N
k

(5)

where the symbol ⇠ represents a similarity relationship in some
sense. Each cost function J

k

(w) would not be generally minimized
at the same point. It was shown in [15] that, in this case, the diffusion
solution converges towards a Pareto optimum of the multi-objective
optimization problem constructed from the costs in (4). Further re-
sults on the convergence behavior of the diffusion strategy under this
multitask scenario are presented in [32]. These insights motivated an
extension of the diffusion LMS strategy to deal more effectively with
multitask problems in [27, 28].

3. SOLUTION MODELS
WITH OVERLAPPING HYPOTHESIS SUBSPACES

3.1. Problem formulation

Relationships among optima can be modeled in several ways, and
they may help improve the estimation ability of agents. In this paper,
we assume that the optimum parameter vector at each node k can be
expressed as

w?

k

= ⇥u? + ✏?
k

(6)

where ⇥u? is common to all nodes, ✏?
k

is a node-specific compo-
nent, and ⇥ = [✓1, . . . ,✓M

] is an L⇥M matrix with M  L. We
assume ⇥ to be known and full-rank. According to this model, all
tasks share a common component that lies in the subspace spanned
by the columns of ⇥. There are situations where an over-complete
matrix ⇥ should be used. This would require additional constraints
such as sparsity for u?. We will not consider this case here.

Now replacing (6) into (4) yields the aggregate cost function:

J

glob(u, {✏
k

}N
k=1) =

NX

k=1

E{|d
k,n

� (⇥u+ ✏
k

)>x
k,n

|2} (7)

We expect the estimation of w?

k

performed by each node to benefit
from the cooperative estimation of u?. It is however not suitable
to minimize (7) directly with respect to u and {✏

k

}N
k=1 since the

decomposition w
k

= ⇥u + ✏
k

is not unique. Indeed, let s be any
vector in the column span of ⇥. Then, {⇥u? � s, {✏?

k

}N
k=1 + s} is

also a minimizer of (7). From the point of view of convex analysis,
the rank deficiency of the Hessian of (7) results in non-uniqueness
of the solution {u?

, {✏?
k

}N
k=1}. This ambiguity does not allow us to

derive a cooperative strategy based on this decomposition.

3.2. Cooperative adaptive solution

Problem (7) can be modified so as to guarantee a unique solution.
Among other possibilities, we restrict the components {✏

k

}N
k=1 to

lie in the complementary subspace of span{✓1, . . . ,✓M

}. Imposing
this constraint, the problem to be addressed can be formulated as

min
u,{✏k}Nk=1

J

glob �u, {✏
k

}N
k=1

�

subject to ✏
k

2 span(⇥?) 8k = 1, . . . , N

with ⇥> ⇥? = 0

(8)

where the L�M columns of ⇥? span the complementary subspace
of span{✓1, . . . ,✓M

}. Since ✏
k

is an element of span{⇥?}, it can
be expressed as

✏
k

= ⇥?⇠
k

(9)

where ⇠
k

is an (L�M)⇥ 1 vector of coefficients. This representa-
tion is useful in several scenarios. First, consider the case where
⇥ is partly composed of selected columns of the identity matrix
I
L

. This means that a subset of the entries of w?

k

are common to
all nodes while no further restriction is imposed on the other en-
tries. This case is a direct extension of the single-task scenario. An-
other example concerns a beamforming problem with a generalized
side-lobe canceler (GSC). In that case, the matrix ⇥ would act as a
blocking matrix to cancel signal components that lie in the constraint
space [33].

Now replacing (9) into (8), the optimization problem becomes
unconstrained with the following objective function:

J

glob(u, {⇠
k

}N
k=1)

=
NX

k=1

E{|d
k,n

� (⇥u+⇥? ⇠
k

)>x
k,n

|2}

=
NX

k=1

E{|d
k,n

|2}+ u>⇥>
NX

k=1

R
x,k

⇥u� 2
NX

k=1

p>
dx,k

⇥u

+ 2u>⇥>
NX

k=1

R
x,k

⇥? ⇠
k

+
NX

k=1

⇠>
k

⇥>
?Rx,k

⇥?⇠
k

� 2
NX

k=1

p>
dx,k

⇥?⇠
k

(10)

with R
x,k

denoting the covariance matrix of the input data x
k,n

,
and p

dx,k

denoting the covariance vector between x
k,n

and d

k,n

.

Lemma 1 Under the constraint that components {✏
k

}N
k=1 lie in a

subspace orthogonal to span{✓1, . . . ,✓M

}, problem (8) admits a
unique solution with respect to u and {✏

k

}N
k=1. ⌅



This proposition can be proved via the positive definiteness of the
Hessian of (10). This guarantee allows us to derive a distributed
strategy for the estimation problem. Focusing on the terms that de-
pend on u in (10) and considering the optimum ⇠?

k

, we have the
global cost depending on u:

J

glob
u

(u) =
NX

k=1

J

u,k

(u)

=
NX

k=1

⇣
u>⇥>R

x,k

⇥u� 2p>
dx,k

⇥u

+ 2u>⇥>R
x,k

⇥?⇠
?

k

+ g

k

(⇠?

k

)
⌘

(11)

where g

k

(⇠?

k

) represents the remaining terms with ⇠?

k

in (10). Since
J

glob
u

(u) has a unique minimizer for all nodes over the network,
nodes can adopt a single-task cooperative strategy to enhance es-
timation accuracy. Without loss of generality and considering the
advantage of diffusion adaptation, we shall now derive an algorithm
based on diffusion LMS. We introduce a right-stochastic matrix C
with nonnegative entries c

`k

such that
NX

k=1

c

`k

= 1 and c

`k

= 0 if k /2 N
`

(12)

With each node k, we associate a local cost over the variable u:

J

loc
u,k

(u) =
X

`2Nk

c

`k

J

u,`

(u). (13)

Since C is right-stochastic, we note that

J

glob
u

(u) =
NX

k=1

J

loc
u,k

(u). (14)

Using instantaneous approximations for second-order statistics,
namely, R

x,k

⇡ x
k,n

x>
k,n

, and p
dx,k

= d

k,n

x
k,n

, following
the derivation of the diffusion LMS from [11, 13], and using the
instantaneous estimate ⇠

k,n

for approximating the unknown ⇠?

k

, we
can update the the estimate for the parameter vector u at node k as
follows:

u
k,n+ 1

2
= u

k,n

+ µ

X

`2Nk

c

`k

⇥>x
`,n

⇥
d

`,n

� (⇥u
k,n

)>x
`,n

� (⇥?⇠
`,n

)>x
`,n

⇤

u
k,n+1 =

X

`2Nk

a

`k

u
k,n+ 1

2

(15)

where u
k,n+ 1

2
is the intermediary result provided by the adapta-

tion step. Although ⇠
k,n

is used in place of ⇠?

k

, we will show the
convergence of the algorithm in the next section. The nonnegative
coefficients a

`k

define a left-stochastic matrix A that satisfies the
conditions

NX

`=1

a

`k

= 1 and a

`k

= 0 if ` /2 N
k

(16)

On the other hand, since the parameter vectors ⇠
k

are node-specific,
if no further constraints are imposed, they can be updated indepen-
dently of each other via stochastic gradient descent:

⇠
k,n+1 = ⇠

k,n

+ µ⇥>
?xk,n

⇥
d

k,n

� (⇥u
k,n

)>x
k,n

� (⇥?⇠
k,n

)>x
k,n

⇤ (17)

At each instant n, node k updates parameter vectors u
k,n

and ⇠
k,n

using (15) and (17), respectively. The estimate w
k,n+1 is corre-

spondingly given by

w
k,n+1 = ⇥u

k,n+1 +⇥? ⇠
k,n+1 (18)

It is interesting to note from (18) that

u
k,n+1 = (⇥>⇥)�1⇥>w

k,n+1 (19)

⇠
k,n+1 = (⇥>

?⇥?)
�1⇥>

?wk,n+1 (20)

This means that update equations (15) and (17) can be expressed in
terms of w

k

, without using the auxiliary variables u and {⇠
k

}N
k=1.

This makes the algorithm a direct extension of diffusion LMS with
subspace constraints. Specifically, choosing C = I

N

in order to
avoid raw data exchange and node-specific components, we get the
algorithm presented in Algorithm 1.

Algorithm 1: ATC diffusion LMS for multitask problems
with hypothesis subspace overlap

Parameters: Preset
– non-negative step size µ for all nodes.
– left-stochastic combination matrix A.
– matrix ⇥ with vectors {✓1, . . . ,✓M

}.
Initialization: Set initial weights w

k,0 = 0 for all k.
Algorithm: At each instant n � 1, and for each node k,

updates w
k,n

:

w
k,n+ 1

2
= w

k,n

+ µS⇥ x
k,n

⇥
d

k,n

�w>
k,n

x
k,n

⇤
(21)

w
k,n+1 = P⇥? w

k,n+ 1
2
+

X

`2Nk

a

`k

P⇥ w
`,n+ 1

2
(22)

where S⇥ = ⇥⇥> +⇥?⇥
>
?, along with the projection

matrices P⇥ = ⇥(⇥>⇥)�1⇥> and P⇥? = I
N

� P⇥.

If ⇥? is the complementary subspace of ⇥, and columns of
⇥ and ⇥? are orthonormal, Algorithm 1 can be further simplified
using ⇥⇥> + ⇥? ⇥>

? = I
N

and P ⇥ = ⇥⇥>. If ⇥ = I
N

, it
reduces to the diffusion LMS algorithm (with C = I

N

) [11].

4. NETWORK PERFORMANCE ANALYSIS
In this section we examine the convergence properties and perfor-
mance of the adaptive strategy described in Algorithm 1. Detailed
proofs or derivations are omitted due to space constraints. In order to
perform the analysis, we collect information from across the network
into block vectors and matrices. Let us denote by w

n

and w? the
block weight estimate vector and the block optimum weight vector,
respectively, both of size NL⇥ 1, that is,

w
n

= col{w1,n, . . . ,wN,n

} (23)
w? = col{w?

1, . . . ,w
?

N

} (24)

Define the weight error vector v
n

as the difference between the in-
stantaneous estimate w

n

and the optimum w?:

v
n

= w
n

�w? (25)

Let us introduce the following NL⇥NL block diagonal matrices:

H
x

= diag {R
x,1, . . . ,Rx,N

} (26)
DS⇥ = diag{S⇥, . . . ,S⇥} (27)
DP⇥ = diag{P⇥, . . . ,P⇥} (28)

DP⇥?
= diag{P⇥? , . . . ,P⇥?} (29)



as well as the block matrices and vectors:

B =
�
A>DP⇥ +DP⇥?

�
(I

LN

� µDS⇥H
x

) (30)

r = (A> � I
LN

)DP⇥w? (31)

G = (A>DP⇥ +DP⇥?
) diag{�2

z,1Rx,1, . . . ,�
2
z,N

R
x,N

}

⇥ (A>DP⇥ +DP⇥?
)> (32)

where A = A ⌦ I
L

. Note that if the optimum w? strictly satis-
fies (6) and the constraints in (8), then r in (31) reduces to 0. We
will continue using expression (31) in order to have a more general
analysis for the cases where these constraints can be violated. It
can be verified that the mean weight error vector E{v

n

} evolves
according to the recursion:

E{v
n+1} = BE{v

n

}� r (33)

We note from (33) that Algorithm 1 asymptotically converges in
the mean sense for step-sizes µ that ensure ⇢(B) < 1, where ⇢(·)
denotes the spectral radius of its matrix argument. In particular, if
the optimal vectors w? satisfy (6) subject to constraints (8), then
Algorithm 1 becomes unbiased with respect to w?, that is,

lim
n!1

E{v
n

} = 0. (34)

Otherwise, the bias is given by

lim
n!1

E{v
n

} = (B � I
LN

)�1r. (35)

However, even in this latter case, cooperation among nodes may still
be beneficial as long as the contrast between the optimal vectors w?

k

in span{✓1, . . . ,✓M

} is small. Such situation is discussed in [23]
for diffusion LMS when operating in a multitask environment.

Let us assume that the step-size µ is sufficiently small so that
higher-order powers of µ can be neglected, and let

K = B> ⌦B>
. (36)

It can be verified that the squared norm of v
n

weighted by any
positive-definite matrix ⌃ (represented in vector form as � =
vec{⌃}) evolves approximately according to

E{kv
n+1k2�} = E{kv

n

k2K�}+ s>
n

� (37)

where
s
n

= vec
⇣
G> + rr> � 2 r (BE{v

n

})>
⌘

(38)

We note from (37) and (38) that the algorithm is mean-square stable
when K is stable. In this case, we define the network mean-square-
deviation (MSD) learning curve as

⇣

n

=
1
N

E{kv(n)k}2. (39)

It can be verified that ⇣
n

evolves according to the following recursion
for n � 0:

⇣

n+1 = ⇣

n

+
1
N

�
(�

n

+ s
n

)>vec(I
LN

)� kv0k2(I(LN)2�K)Kn�

�

(40)

�
n+1 = K>�

n

+ (K � I(LN)2)
>s

n

(41)

with the initial conditions ⇣0 = 1
N

kv0k2 and �0 = 0. Once conver-
gence is achieved, then the steady-state MSD, namely, the limiting
value of ⇣

n

as n ! 1, is given by

⇣1 =
1
N

s>
1 (I(LN)2 �K)�1vec(I

LN

) (42)

with s1 determined from (38) and E{v1} from (35) .

5. SIMULATIONS

In this section we provide an example to show how the algorithm
converges, and to illustrate theoretical models. We consider a net-
work consisting of 12 nodes with connections shown in Fig. 1(a).
Inputs x(n) were zero-mean 4 ⇥ 1 random vectors governed by a
Gaussian distribution with covariance matrix R

x,k

= �

2
x,k

I
L

. The
noises z

k

(n) were i.i.d. zero-mean Gaussian random variables, in-
dependent of any other signal with variances �

2
z,k

. Variances �

2
x,k

and �

2
z,k

used in this experiment are depicted in Fig. 1(b). Matrix ⇥
was chosen as

⇥ =

0

B@

0.3162 0.5573 �0.6325
�0.6325 �0.4352 �0.3162
0.6325 �0.4352 0.3162

�0.3162 0.5573 0.6325

1

CA (43)

Note that its columns are orthonormal. The complementary sub-
space is spanned by:

⇥? = (0.4352 0.5573 0.5573 0.4352)> (44)

The coefficient vector u? was set to

u? = (0.6 � 0.4 0.3)> (45)

Let us now consider two cases:

Case 1: Assume that the optimal parameter vectors w?

k

follow
model (6) with ✏?

k

= ⇥?⇠
?

k

and ⇠?

k

is a realization of a zero-mean
Gaussian distribution with standard deviation 0.2. The step-sizes of
the algorithm were set to µ = 0.01, 0.02, and 0.05, respectively.
According to Corollary 1, the algorithm is unbiased in this case.
The MSD learning curves are illustrated in Figs. 1(c). The simu-
lated curves were obtained by averaging over 100 Monte-Carlo runs.
The theoretical transient behavior and theoretical steady-state MSD
were calculated via Theorem 3 and Corollary 2, respectively. The
simulation results agree with the theoretical results, and illustrate
the trade-off between the step-size and steady-state MSD as in usual
adaptive strategies.

Case 2: Assume that the node-specific components ✏?
k

in (6) do not
strictly lie in the complementary subspace of ⇥. In this experiment,
we set

✏?
k

= ⇥⌫?

k

+⇥?⇠
?

k

(46)

with ⌫?

k

corresponding to realizations of a zero-mean Gaussian dis-
tribution with standard deviation 0.02, and ⇠?

k

determined as in Case
1. Case 2 is thus a non-ideal situation where components ⇥(u? +
⌫?

k

) that lie in span{✓1, . . . ,✓M

} are not the same for all nodes. The
simulated and theoretical MSD learning curves with various step-
sizes are illustrated in Fig. 1(d).

Finally, we compared the proposed cooperative algorithm with
non-cooperative LMS in the two cases described above. The MSD
learning curves are shown in Figs. 1(e) and 1(f). It clearly appears
that cooperation between nodes is beneficial. It can also be noticed
that the violation of the orthogonality assumption of ⇥u? and ✏?

k

leads to a degradation in the performance of Algorithm 1. However,
in this case, it still outperforms the non-cooperative strategy since the
deviation caused by ⌫?

k

is small. It can be expected that Algorithm 1
should fail to perform well if ⌫

k

becomes significant. Autonomous
clustering algorithms that adjust combination coefficients a

`k

can
remedy this problem [32].
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(c) Convergence illustration (case 1).
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(d) Convergence illustration (case 2).
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(e) Performance Comparison (case 1).
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Fig. 1. Network configuration and simulation result illustration.

6. CONCLUSION AND PERSPECTIVES
In this paper we formulated an online multitask learning problem
with the assumption that optimums to be estimated consist of an off-
set component shared by all agents and a node-specific component
in an orthogonal subspace. An algorithm that extends the single-
task diffusion LMS algorithm was derived and its convergence prop-
erties were analyzed. Further work will include extensions of this
multitask problem to other structural constraints, and applications to
relevant scenarios.
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