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The 4D organization of the interphase nucleus, or the 4D Nucleome
(4DN), reflects a dynamical interaction between 3D genome structure
and function and its relationship to phenotype. We present initial
analyses of the human 4DN, capturing genome-wide structure using
chromosome conformation capture and 3D imaging, and function
using RNA-sequencing. We introduce a quantitative index that
measures underlying topological stability of a genomic region. Our
results show that structural features of genomic regions correlate
with function with surprising persistence over time. Furthermore,
constructing genome-wide gene-level contact maps aided in identi-
fying gene pairs with high potential for coregulation and colocaliza-
tion in a manner consistent with expression via transcription factories.
We additionally use 2D phase planes to visualize patterns in 4DN
data. Finally, we evaluated gene pairs within a circadian gene module
using 3D imaging, and found periodicity in the movement of clock
circadian regulator and period circadian clock 2 relative to each other
that followed a circadian rhythm and entrained with their expression.
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The human genome is a beautiful example of a dynamical
system in three dimensions. A comprehensive understanding

of the genome, like any biological system, relies on recognizing
its dynamical structure–function (S-F) relationships, from a mo-
lecular scale to a system-wide scale. It is known that gene topology
or arrangement in 3D space (hereafter, structure) affects gene
expression (function) (1, 2). Additionally, insertions or rear-
rangements in the genome may interfere with native genome to-
pology and influence disease state. For example, it has been found
that retroviral insertions can have 3D interactions with known
cancer genes (3). Recent studies have also highlighted that distinct
genome topology is found in different cell states, such as at dif-
ferent stages of the cell cycle (4) or in different cell types (5).
However, very little is known about these S-F relationships in a
true dynamical setting. A major goal of the 4D Nucleome (4DN)
approach is to integrate the dynamical features of 3D architecture
systematically in the interphase nucleus and the dynamical tran-
scriptional landscape, with consequent phenotypic variation in
cellular differentiation and disease (6).
Here, we take steps toward a more dynamical view of un-

derstanding S-F relationships in the genome. Biologically, we
sought to understand genetic bases for wound healing processes
as well as biological clocks, a concept captured by the term
biochronicity (7). Therefore, we interrogated a proliferating
population of karyotypically normal human fibroblasts, for
which the cell cycle and circadian rhythms were initially syn-
chronized (8, 9) (SI Appendix). Following synchronization, in sam-
ples taken throughout a time series, we evaluated structure through
genome-wide chromosome conformation capture (Hi-C) and
3D-FISH, and function through RNA-sequencing (RNA-seq) to
measure genome-wide transcription (Materials and Methods and
SI Appendix).
We use quantitative approaches that are novel in their applica-

tion to the study of dynamical S-F relationships in the human

genome. The key mathematical object is the graph Laplacian con-
structed from measurements of genome-wide gene expression or
contacts from Hi-C. Our goal is to uncover the partitioning of the
Hi-C matrices and their correlation with function over time. The
Laplacian signifies diffusion (consensus) among a discrete number
or continuum of entities. It has been used across many disciplines in
situations where autonomous entities reach a consensus without a
central direction (10). Examples include the movement of animals
in a group, such as “flocking” in birds, and the emergence of
common languages in primitive societies (11, 12). Another impor-
tant application of the Laplacian is in spectral clustering, where it
provides an efficient method for graph partitioning (13).
The Laplacian can be summarized as follows. Consider an

adjacency matrix   A, where ðAÞi, j =wðni, njÞ, and weight function,
w, satisfying wðni, njÞ=wðnj, niÞ (symmetrical) and wðni, njÞ≥ 0
(nonnegative). The Laplacian L of A is defined to be L=D−A,
where D= diagðd1, . . . , dkÞ and di =

Pk
j=1alj. The normalized

Laplacian is the matrix L=D−1=2LD−1=2. The second smallest
eigenvalue of L  ðor  LÞ  is called the Fiedler number, and the
corresponding eigenvector is called the Fiedler vector (14). In
the context of the 4DN, the magnitude of the Fiedler number is a
measure of the underlying stability of the topology of the geno-
mic region at any given scale. For Hi-C contacts, a high Fiedler
number in a genomic region would suggest high conformational
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stability that may be important for regulation of gene expression.
The Fiedler vector partitions the genome into two parts that
reflect underlying topology, as given by edge weights inferred
from Hi-C data. The Fiedler vector plays a role similar to the
eigenvector associated with the largest eigenvalue (principal
component 1) of the correlation matrix of the normalized Hi-C
matrix (15), but it is directly related to properties of the associ-
ated graph (14). Similar analyses can be performed for gene
expression. Therefore, analyses based on the graph Laplacian
provide a flexible framework for assessing dynamical S-F corre-
lations in the genome (16).
Using our quantitative approaches, we have performed genome-

wide gene-level S-F analyses over time, and give examples of how
these methods can be adapted to the study of any genomic scale
and any genomic region of interest. To capture genome-wide gene-
level structure more precisely, we have constructed adaptive reso-
lution contact maps with tailored binning of contacts to within each
gene regardless of size, rather than using conventional fixed reso-
lution Hi-C matrices. To gain an understanding of patterns in S-F
relationships and how they evolve over time, we performed 2D
phase plane analyses of our data, where axes on the plane represent
structure and function. A phase plane is useful for understanding
phenomena in a nonlinear system, such as the solution to an ordi-
nary differential equation (17). For example, in the 2× 2 autono-
mous system dx

dt = f ðx, yÞ,   dydt = gðx, yÞ with solutions x= xðtÞ, y= yðtÞ,
the x–y plane is called the phase plane of the system. A phase
curve is a plot of the solution to a set of equations of motion in a
phase plane, which helps to visualize patterns in the system. In
the context of the 4DN, xðtÞ and yðtÞ  can represent structure and
function measures for chromosome regions or genes.

Results
Unified 4DN Analysis Framework.Many methods have been used in
the analysis of genome structure and transcriptional activity.
Lieberman-Aiden et al. (15) segregated genomic regions into
two compartments that corresponded to chromatin accessibility
and gene expression, using the first eigenvector of the correla-
tion matrix of the normalized Hi-C matrix. Rao et al. (18) ex-
tended this analysis to multiple compartments using a variety of
methods, including hierarchical clustering. Dixon et al. (19) and
Filippova et al. (20) identified topological domains via the hidden
Markov model and dynamic programming, respectively. Further-
more, 3D chromosome reconstruction has been performed with
Hi-C data using multidimensional scaling approaches (21, 22). For
analysis of transcription profiles, hierarchical clustering is usually
performed (23).
Our goal was to build a unified general strategy for these

analyses for efficient characterization of chromatin structure and
corresponding functional output. Analysis based on the graph
Laplacian provides a common base for all of the above analyses.
In particular, the Laplacian framework is advantageous in that it
provides both the eigenvector (Fiedler vector) and the corre-
sponding eigenvalue (Fiedler number) in quantification of the
underlying topology. The Fiedler vector of the normalized Hi-C
matrix efficiently identified chromosome compartments (a com-
parison with previously published data and methods is provided in
SI Appendix, Fig. S1 A–D) and hierarchical topological domains
in our data. By using the Fiedler number to quantify the stability
of the topology of genomic regions, we were able to assign to
genome structures a meaningful value that facilitated further
quantitative analysis. We derive and summarize the associated
algorithms and their advantages in detail in SI Appendix.

Chromosome Domain Analysis and Adaptive Resolution Contact
Maps. We generated nine high-quality Hi-C libraries from our
56-h time course for studying genome structure and function
(summarized in SI Appendix, Dataset S1). Previous analyses of
Hi-C chromatin interaction maps suggest the formation of

chromosome territories and spatial segregation between active
and inactive chromatin (15), and topologically associating do-
mains (TADs) have been proposed as a backbone of chromatin
organization that is cell type-invariant (19). In addition, high-
resolution Hi-C maps have revealed chromatin loops that are
conserved among cell types (18), and suggest cell lineage-spe-
cific preexisting looping that predicts gene expression (24).
Furthermore, analysis of ES cells and differentiated progeny
shows compartment switching, changes in domain-level in-
teractions, and allelic gene expression imbalance (5). We have
identified topological domains with the graph Laplacian method
that are consistent with those topological domains identified
using principal component analysis (SI Appendix, Fig. S1E). By
further considering the activity of genes within a domain using
RNA-seq data from the same time points, we have annotated the
domains as active, inactive, or mixed state. Fig. 1 A–C shows the
Fiedler vector and the identified domains using a 100-kb reso-
lution Hi-C matrix for chromosome 4. We further examined
three of the domains using the fragment-level contact maps
and the corresponding expression profiles of genes within the
domains (Fig. 1 D1–D3).
Select regions of dense contacts were observed, for example,

within the clock circadian regulator (CLOCK) gene. However,
the fixed resolution binning (e.g., 1 Mb, 100 kb) of conventional
contact maps does not allow for gene-level analysis due to the
large variability in gene lengths. We therefore constructed an
adaptive gene-resolution contact matrix by summarizing the li-
gations according to the coordinates of genes instead of using
fixed-size bins (SI Appendix, Fig. S1F). SI Appendix, Fig. S1G
shows the constructed normalized contact relationships of all 617
genes on chromosome 14 over time, with RNA-seq counts for
each gene shown above the contact maps. Analyzing sequential
contact maps allowed us to study gene-level dynamical relation-
ships between structure and function. Fragment contact maps
also revealed specific gene-level 3D organization in space (SI
Appendix, Fig. S1H). In addition, transcriptional activity appeared
to be sensitive to contacts in regions flanking a gene body,
which may reflect local folding within gene regulatory elements
(25) (SI Appendix, Fig. S1 I–K). It is also possible to summarize
the number of contacts between Hi-C restriction sites and to
construct an adaptive fragment-level contact matrix, thus en-
abling exploration of structures within a gene itself (Fig. 2 and
SI Appendix, Fig. S1H).

Structure and Function Phase Plane. We introduce a phase plane
for a qualitative assessment of the dynamics of structure and
function, because these relationships are not yet well defined. In
this phase plane, one axis represents structure and the other
represents function for a given genomic unit. Thus, points in the
plane represent structure and function values for the genomic
unit at a given time. We term the difference between two points
an S-F gap. In SI Appendix, Fig. S1L, we show our data in phase
planes with the genomic unit as genes, TADs, and whole chro-
mosomes. For the gene level, structure was captured by the
Fiedler number for the whole gene from its fragment-level
contact map (SI Appendix) and the function was captured by the
transcript level as determined by RNA-seq. For larger genomic
scales, structure was represented by the Fiedler number, based
on the contact map of the region, and function was captured by
the mean transcript levels of the region. Point clouds in the
phase plane, made up of eight time points, were termed S-F
domains, analogous to basins of attraction in dynamical systems
theory. The difference between centroids of two S-F domains
contrasts the structure and function for different genomic re-
gions in the same cell type or the same genomic region across
different cell types. We find that chromosomes occupy distinct
regions in this plane, as exemplified by the positions of chro-
mosomes 18 (gene-poor) and 19 (gene-rich) (Fig. 3A).
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We hypothesized that S-F domains would be cell type-specific,
and that points outside a baseline S-F domain could be used to
indicate changes in cell state after perturbations. Thus, the phase
plane could be used to visualize patterns in S-F status during cell
differentiation or for cells evolving in response to a particular
imposed environment (SI Appendix, Fig. S1M). To determine
whether the phase plane representation would distinguish be-
tween cell types, we examined S-F data obtained from human ES
cells (19) and from human lymphoblastoid cells (15), collected
for single time points. Fig. 3B shows six representative TADs
(out of 63 identified) in a phase plane comparison of ES cells
and lymphoblastoid cells with fibroblasts. Nearly all of the TADs
in ES cells and lymphoblastoid cells had S-F values that were at
least 3 SDs outside the fibroblast S-F domain, indicating that we
can easily distinguish between cell types using the S-F phase
plane. Thus, using structure and function information simulta-
neously improves discriminative power for a better understanding
of cell type specificity.

Dynamically Expressed Gene Modules. For RNA-seq (26, 27) of
primary human fibroblasts over the 56-h time course, we ana-
lyzed three replicates for each condition in cells that were initially
cell cycle- and circadian rhythm-synchronized. Time 0 includes
dexamethasone (dex) treatment samples and corresponding
baseline controls without exposure to serum. The rest were
sampled at 8-h intervals counting from time 0 after exposure to
serum (Materials and Methods).
We identified a set of 7,786 genes that significantly varied in

expression levels between any two time points (SI Appendix and
Dataset S2). We then performed clustering analysis based on the
correlation matrix of their expression levels over time, and
consider the correlation matrix (shifted by one to make entries
positive) as the weighted adjacency matrix (SI Appendix).
Variance-normalized spectral clustering was then applied on this
adjacency matrix with the cluster number set to 6, 8, 16, or 32.
Through two-step spectral clustering, first to group the genes into
the eight top clusters and second to recluster each top cluster into
four subclusters, we found a total of 32 subclusters, which

represent the expression patterns of the significant genes (SI
Appendix, Fig. S2A).
We performed gene ontology (GO) analysis (28) of the genes

in each subcluster for enrichment under GO terms (false discovery
rate <0.05; SI Appendix, Dataset S3). A summary of the top 65
significant GO terms enriched with genes (Bonferroni P < 0.05)
from each of the 32 subclusters is presented in SI Appendix, Fig. S2
B and C and Dataset S4. We also observed several characteristic
expression patterns in cells after serum stimulation, which are
shown in SI Appendix, Fig. S2A.

Dynamical S-F Correlations. We have used concepts from the the-
ory of networks to evaluate genome-wide S-F dynamical corre-
lations. For structure, gene boundaries were defined by the
transcribed region plus 2 kb upstream of the transcription start
site and 2 kb downstream of the polyadenylation site (29). In
method A, we used gene dynamics: the time-dependent variation
in structure and function within each gene. In method B, we used
gene network dynamics. Network analyses were performed using
two methods. In method A, we inferred networks from gene
dynamics, that is, by constructing the interaction or the edge based
on the correlation between gene expression and the correlation
between the structures of each gene. In method B, we con-
structed edges based on the correlation between gene expression
and Hi-C contacts (SI Appendix, Fig. S3A). In both methods, we
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Fig. 1. TAD and corresponding gene expression dynamics of chromosome 4 (Chr 4). (A) Mean RNA-seq counts [reads per kilobase length per million reads
(RPKM)] of binned genes]. (B) Fiedler vector computed from the normalized Hi-C matrix. Red bins are the genes associated with the positive Fiedler vector
entries, and green bins are the genes associated with negative Fiedler vector entries. (C) Hi-C matrix of Chr 4 with activity of identified TADs annotated by
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respectively. (D1) Fragment read contact map of an inactive TAD with genes annotated by color (Left) or no detectable transcripts from any genes in this TAD
over time (Right), with individual genes colored corresponding to the maps (Left). (D2) Fragment read contact map of an active TAD (Left) or active tran-
scription of all genes in this TAD over time (Right). (D3, Left) Fragment read contact map of a mixed TAD. (D3, Right) Expression patterns of its genes are both
active and inactive over time. Dashed green lines on the maps indicate HindIII cutting sites.
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Fig. 2. Gene dynamics. S-F dynamics of CLOCK (Left) and PER2 (Right).
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surveyed regulatory regions of the identified correlated gene
pairs for common transcription factor binding sites and de-
termined whether these common transcription factors were
expressed in our RNA-seq dataset. Gene network dynamics
therefore facilitate identification of gene pairs or clusters with
high potential for coregulated expression that is consistent with
the transcription factory model.
To identify the genes with S-F correlations, we studied the

7,786 genes that significantly varied in expression and then four
biological modules: wound healing, cell cycle, 24-h circadian
clock, and dex response. The distribution of these genes in our 32
clusters is shown in SI Appendix, Fig. S2D. The set of wound
healing genes was obtained from published data (23, 30). The set
of cell cycle genes was taken from the “cell cycle” GO term list
(SI Appendix, Dataset S5). For the set of circadian genes, we
used the 24-h periodic genes from JTK-CYCLE (31) analysis of
our RNA-seq data. The dex response genes were identified using
bromouride labeling and sequencing (Bru-seq), a method that
captures newly synthesized transcripts (32). We found several
hundred new transcripts with significant differences in abun-
dance between samples with and without dex treatment (SI
Appendix, Datasets S8 and S9).

Gene Dynamics. We defined gene dynamics using the dynamical
correlation between gene expression and gene structure (Fig. 4
and SI Appendix, Fig. S3A). We identified a set of 2,574 genes
from the 7,786 significant genes, using the following criteria: (i) a
gene’s Hi-C Fiedler number >0 for at least four time points
(a value of 0 was considered artifactual), (ii) the absolute value
of the correlation between RNA-seq and a Fiedler number >0.3,
and (iii) genes were along a unique length of DNA.

Gene Network Dynamics. We first constructed networks by con-
sidering the correlation between gene structures represented by
Fiedler number. We performed the analysis (method A above;
steps and parameters are shown in SI Appendix, Fig. S3A) on the
above-mentioned 2,574 genes, chromosome by chromosome. A
total of 986 gene pairs were identified (SI Appendix, Dataset
S10). We report the identified gene pairs and the constructed
networks for chromosome 14 in Fig. 5. We then identified common
binding sites of expressed transcription factors for these gene pairs
(SI Appendix). We found that gene pairs shared more binding sites
than randomly expected in 16 of 22 chromosomes (SI Appendix, Fig.
S3B), suggesting that transcription may be coordinated in these
structure- and function-correlated gene pairs. We also examined the
mean contact over time between all gene pairs of the extracted
2,574 genes. We found that if two genes have a high Fiedler
number correlation, they are more likely to have contacts be-
tween them (SI Appendix, Fig. S3C).

We applied the above analysis to the four biological modules
and found 35 wound healing, 49 cell cycle, 52 circadian clock,
and 49 dex response gene pairs that were highly correlated be-
tween structure and function (SI Appendix, Dataset S10). Net-
works constructed for the circadian clock module are shown in
Fig. 3 D–I, and the others are shown in SI Appendix, Fig. S3 C–G.
We also mapped common binding sites for all these gene pairs,
as shown in SI Appendix, Dataset S10.
We then constructed gene networks by considering the cor-

relation between transcription and pairwise contacts over time
(method B above; steps and parameters are shown in SI Appendix,
Fig. S3A). Coregulation networks can be established via the gene
pairs that behave in this manner. We found 873 gene pairs by
performing this analysis on the dynamic gene set, chromosome by
chromosome. Three selected networks for chromosome 14, with
average gene expression and average gene contacts within each
network, are shown in SI Appendix, Fig. S3L. We identified 22
gene pairs for chromosome 14. A permutation test was then
performed to show the significance of the number of identified
pairs (SI Appendix, Fig. S3J). SI Appendix, Fig. S3K shows the
number of pairs identified using various correlation thresholds.
Identified gene pairs for all chromosomes are reported in SI Ap-
pendix, Dataset S11, along with shared transcription factor motifs.
The analysis was then applied to the four biological modules.

A total of 43 wound healing, 214 cell cycle, 104 circadian clock,
and 104 dex response gene pairs were found to be significantly
correlated (SI Appendix, Fig. S3J). Representative networks of all
modules, along with their mean expression and the contacts, are
shown in SI Appendix, Fig. S3 L–P and Dataset S10. In addition,
we identified gene networks in which expression was anti-
correlated with contacts over time, which may indicate a com-
mon repressing mechanism (SI Appendix, Fig. S3Q). To measure
the intersection between method A and method B, we computed
the correlation of Fiedler number between the gene pairs iden-
tified above, and found that 64% (14 pairs), 63% (27 pairs), 82%
(176 pairs), 70% (73 pairs), and 78% (81 pairs) (for chromosome
14 and the four respective gene modules) had absolute Fiedler
number correlations larger than 0.3.

Periodicity in Spatial Movement in Core Circadian Genes. We used
multicolor 3D-FISH to examine spatial dynamics of the core
circadian genes CLOCK, aryl hydrocarbon receptor nuclear
translocator-like (ARNTL), cryptochrome 1 (CRY1), and period
2 (PER2) (33) (SI Appendix), which have well-studied transcriptional
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Fig. 3. Four-dimensional Nucleome phase plane. (A) Phase plane for Chr
1–22. (B) Phase plane for six representative TADs from Chr 4 across three cell
types. Fundamental differences are seen in TAD coordinates in ES cells (○)
and lymphoblastoid cells (♢) compared with the coordinates of fibroblast
TAD domains (dashed ellipses).

Fig. 4. Synthetic transcription factory (STF). G1 and G2 are two genes, where
e1(t) and e2(t) are their expression levels over time and s1(t) and s2(t) are their
structural changes over time. The potential for interaction between G1 and
G2 can be defined with (i) shared contacts, (ii) the correlation between their
expression [Corr(e1(t), e2(t))], (iii) the correlation between their structures
[Corr(s1(t),s2(t))], and (iv) common transcription factors (C-TF), as determined
by common binding motifs and expression of the transcription factors in our
RNA-seq data. If conditions 1–4 are satisfied, the two genes have high po-
tential for common regulation via shared transcriptional space, consistent
with a transcription factory model.
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periodicity. Notably, although we found no Hi-C contacts be-
tween CLOCK and PER2 (SI Appendix, Fig. S4 A and B), we
found that CLOCK S-F dynamics are negatively correlated,
whereas they are positively correlated for PER2. Because tran-
scriptional activity that is concurrent with movement in the nu-
cleus has been reported (2, 9), we hypothesized that CLOCK and
PER2, which have antiphase transcriptional periodicity (33), would
show distinct spatial dynamics. We therefore used multicolor
3D-FISH to obtain the allele locations of the genes for each of
16 time points simultaneously (Fig. 6A).
We used two measures to quantify the dynamics of the relative

distances between gene pairs for all four circadian genes. The first
measure was the mean closest distance (MCD; SI Appendix, Fig.
S4C) between each gene pair (relative distance curve), and the
second measure was the Fiedler number of the Euclidian distance
matrix among the four genes (stability curve). We then correlated
these measures with transcription data. We found that the relative
distance and stability curves for CLOCK and PER2 showed peri-
odicity, and followed a 24-h circadian rhythm (Fig. 6B and SI Ap-
pendix, Fig. S4 D and E). When the MCD between PER2 and
CLOCK was at its minimum, PER2 transcription was minimal and
CLOCK transcription was maximal, and vice versa. Collectively, we
observed that the MCD, the Fiedler number, and expression levels
over time between PER2 and CLOCK were all within approximately
6-h phase shifts of one another. This CLOCK/PER2 system had the
highest Fiedler numbers when CLOCK and PER2 had the largest
relative distance between them, which may hint at a particular state
or time for which genome topology has particular significance in
circadian gene dynamics. A schematic of this process is outlined in
Fig. 7 and SI Appendix, Fig. S4 E and F. These observations provide
insight into circadian gene modules, although the mechanisms
driving these S-F dynamics require further investigation.

Discussion
In the current study on genome S-F dynamics, we have analyzed
Hi-C and RNA-seq data sampled over a 56-h time course in
primary human fibroblasts. We have developed a mathematical
framework that we demonstrate effectively captures known
characteristics of interphase chromosome organization, such as
partitioning the genome into compartments and identification of
TADs (15, 19, 32). This framework additionally provides the
Fiedler number, a useful quantitative measure of the stability of
underlying topology at any desired genomic scale. Measures of
topology of a graph have provided useful information in many
fields that can predict behavior or properties of that graph. For
example, the Fiedler number of the weighted Laplacian has been
used in multiagent networked systems to describe interactions
between nodes, and further for studying how to impose control
efficiently on the network (10). Moreover, the Wiener index in
chemical graph theory is a measure of the topology of molecules
that correlates with their properties, such as boiling points and
behavior in liquid phase (34, 35).
Tailoring bin sizes of Hi-C contacts to fit known genes has

facilitated assessment of S-F relationships, both within and be-
tween those genes, vs. binning in fixed lengths along the genome.
Thus, we have captured gene-level structure, as well as expres-
sion for each gene. Although we focused primarily on transcribed
regions of genes, similar analyses could be conducted for other
genomic regions with known boundaries. For example, known
regulatory regions could be assessed genome-wide for local
higher order structures and how these structures correlate with
expression in a particular cell type or state.
In proliferating human fibroblasts, the 7,786 genes with highly

dynamic expression may be considered a wound healing module
that responds to proliferation cues, such as serum stimulation
(23); indeed, we found that 76% of known wound healing genes
were within this highly dynamic set (SI Appendix, Dataset S3).
A large number of genes in this highly dynamic set have highly
correlated S-F dynamics, but the significance of this property and
whether it is found in other cell types are not yet known. In-
terestingly, the wound healing response overlaps with cancer
metastasis (23, 30). Thus, a better understanding of the wound
healing module may provide insight into cellular functions that
are active in metastatic cancer cells.
For S-F data collected over time, we have developed an al-

gorithm for genome-wide identification of gene pairs or net-
works and candidate transcription factors that may be involved in
coordinated gene expression. Criteria used in this identification
are consistent with expression via transcription factories, although
it is unknown whether genes would be actively recruited into or
spontaneously self-organize in shared transcriptional space. Our

A B

Fig. 6. Processing of 3D-FISH raw data maximum projection images (MPIs).
(A) Cartesian coordinate system is superimposed after fitting nuclei to an
ellipse. Red, cyan, white, and magenta points represent probe signals for
PER2, cryptochrome 1 (CRY1), aryl hydrocarbon receptor nuclear translocator-
like (ARNTL), and CLOCK, respectively. (B) RNA-seq data over time are plotted
on the left y axis for CLOCK [solid blue line (L)] and PER2 (solid green L) in
RPKM. MCD in micrometers (dashed black L) and Fiedler number (dashed
red L) between CLOCK and PER2 over time are plotted on the right y axis.

Fig. 5. Networks of dynamic intracorrelated and intercorrelated S-F gene
pairs on Chr 14. Green nodes represent genes, and thick edges between pairs
of genes represent a correlation. (Inset) Colors of edges show how the two
genes are correlated (color key). Genes with transcription factors in common
with all other genes that share edges are denoted by shaded blue squares.
Transcription factors associated with gene pairs are shown in SI Appendix,
Dataset S10.
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algorithm could be used in any system to identify novel or key
interacting genes, and varying correlation thresholds provides
additional flexibility in restricting analyses to gene pairs with
particular S-F properties (SI Appendix, Fig. S3A and Datasets
S10 and S11). The observations of CLOCK and PER2 tran-
scription and genomic movements in 3D space provide a geo-
metric picture of gene regulation in the context of circadian
clocks, one that may give insight into the mechanisms regulating
biological time. These studies also suggest that important spatial
relationships may be too distant in Euclidian space for capture
by Hi-C.
Phase planes have helped us to visualize dynamic S-F correla-

tions (Fig. 3 and SI Appendix, Fig. S1L) and serve as a coordinate
system for distinguishing different cell types with more discrim-
inative power than use of a single index, such as gene expression.

Trajectories within this coordinate system could be evaluated
quantitatively as well. We envision applications in the study of
cellular differentiation to identify states that represent previously
undescribed intermediates along a cell lineage or in the identifica-
tion of disease states. Investigating cellular states with particular S-F
relationships may provide insight into the coregulated gene net-
works driving each stage of differentiation. Furthermore, our 4DN
framework could provide insight into key stages of differentiation
that are vulnerable to external influence, based on the S-F dynamics
of gene networks that are active at that stage, and understanding of
whether key nodes within those networks have influence on global
cellular states. Thus, network-based analyses of gene interactions
may guide intelligent reprogramming strategies that target vulner-
able stages or key nodes. In addition, dynamical S-F relationships
may provide clues as to the nature of abnormal cellular states, such
as cancer progression.

Materials and Methods
Hi-C, RNA-seq, Bru-seq, and multicolor 3D-FISH data were collected from cell
cycle- and circadian rhythm-synchronized proliferating human fibroblasts of
normal karyotype. Data were collected every 8 h for Hi-C and RNA-seq, and
every 4 h for 3D-FISH, spanning a total of 56 h. Detailed materials and
methods are provided in SI Appendix.
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Fig. 7. CLOCK/PER2 circuit. (A) Proposed feedback circuit for CLOCK and
PER2 expression, where CLOCK may self-activate. (B) Relative expression
of CLOCK and PER2 (green arrows) at given relative Euclidian distances
(purple arrows).
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