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a b s t r a c t

Recent research has shown the benefits of large margin framework for feature selection. In this paper,

we propose a novel feature selection algorithm, termed as Large Margin Subspace Learning (LMSL),

which seeks a projection matrix to maximize the margin of a given sample, defined as the distance

between the nearest missing (the nearest neighbor with the different label) and the nearest hit (the

nearest neighbor with the same label) of the given sample. Instead of calculating the nearest neighbor

of the given sample directly, we treat each sample with different (same) labels with the given sample as

a potential nearest missing (hint), with the probability estimated by kernel density estimation. By this

way, the nearest missing (hint) is calculated as an expectation of all different (same) class samples. In

order to perform feature selection, an ‘2,1-norm is imposed on the projection matrix to enforce row-

sparsity. An efficient algorithm is then proposed to solve the resultant optimization problem.

Comprehensive experiments are conducted to compare the performance of the proposed algorithm

with the other five state-of-the-art algorithms RFS, SPFS, mRMR, TR and LLFS, it achieves better

performance than the former four. Compared with the algorithm LLFS, the proposed algorithm has a

competitive performance with however a significantly faster computational.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Feature selection is to choose a subset of the original features
according to some selection algorithm, it has a wide range of
applications, including bioinformatics [1], object detection [2],
computer vision [3]. It aims to reduce the data dimensionality by
removing the redundancy and the correlation of extracted fea-
tures. It has been proven in both theory and practice effective in
enhancing learning efficiency, increasing predictive accuracy, and
reducing complexity of learned results, due to the fact that
accuracy of most classification algorithms, such as SVM, can be
affected notably when applying on tasks with a small number of
training data or with high-dimensional inputs [4,5]. Feature
selection for high-dimensional data is one of the most important
topics in machine learning research. Recently feature selection
based on large margin has been widely investigated [6,7]. Feature
selection based on subspace learning algorithm for high dimen-
sional data was also proposed [8], and achieved good results.
However, research which combines subspace learning with large
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margin has not appeared. The main contributions of this paper
include:
�
 An efficient and novel feature selection algorithm termed as Large
Margin Subspace Learning (LMSL) is proposed. Different from
traditional feature selection algorithms, LMSL is a subspace learn-
ing algorithm based on large margin framework. Firstly, we utilize
the expectation to estimate the nearest missing (the nearest
neighbor with the different label) and the nearest hit (the nearest
neighbor with the same label) of the given sample. Then these
nearest neighbors are projected into the subspace W
(ARd�p,dbp, and to be described in Section 3.2). After that, we
define a novel metric function based on large margin in the
subspace. The objective function is formulated by the metric
function. To obtain row-sparsity of the solution, an ‘2,1-norm
regularization is incorporated into the objective function.

�
 As the proposed objective function and constraints are nonconvex.

In general, a global optimal solution is hard to be obtained. We
propose an efficient algorithm that obtain suboptimal solution and
give detailed description of the algorithm.

�
 Extensive experiments are conducted to evaluate the proposed

algorithm. Experimental results confirm the efficiency of our
algorithm compared with different types of feature selection
algorithms.

www.elsevier.com/locate/pr
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The rest of this paper is organized as follows: Section 2 reviews
prior work on the feature selection. In Section 3, we describe a

basic introduction on large margin theory and a novel feature
selection algorithm. Experimental evaluation is reported and
discussed in Section 4. Finally, we conclude the paper and give
a perspective of future work in Section 5.
2. Related work

According to the way of utilizing label information, feature
selection algorithms can be divided into supervised [9], unsuper-
vised [10–12] two classes. The first class includes Fisher score,
ReliefF [13], SVM-RFE [14], etc. From the perspective of the
selection strategy, feature selection algorithms are divided into
three categories [15]: filter, wrapper and embedded algorithms.
The filter algorithms compute some score of a selected feature
subset by information of each feature, the algorithms are compu-
tationally much cheaper and more efficient, such as: Fisher Score
[16], Laplacian Score [17], Trace Ratio [18]. These algorithms can
be encompassed by algorithm named SPFS (Similarity Preserving
Feature Selection) [15]. Wrapper algorithms use a procedure that
wraps around a learning algorithm, and repeatedly calls the
learning algorithm to evaluate how well it does using different
feature subsets. The wrapper algorithm was firstly proposed in
[19]. One serious problem with these wrapper algorithms is their
high computational complexity because they need to train a large
number of classifiers. To alleviate this problem, forward and
backward selection were proposed in [20]. The algorithms are
heuristic algorithms, none of them guarantee the optimal solution.

Feature selection of embedded algorithms was recently emerged
in [4,21]. For large-scale feature selection problems, the novel
embedded algorithms were proposed by performing feature selection
directly in the SVM formulation in [4,5]. For microarray data, the
embedded algorithm named RFE was proposed in [14]. In this
algorithm, an SVM classifier was iteratively trained with the set of
features, and those with small weights were then removed from the
set. In order to obtain the sparse solution and to improve the
computability, ‘1-SVM with a linear kernel was adopted in [22]. To
jointly perform feature selection and SVM parameter learning for
linear and nonlinear kernels, authors in [23] proposed a convex
framework with ‘1-SVM. However, for an arbitrarily complex non-
linear problem, these algorithms are still no better performance. In
[6], the authors proposed a notable algorithm. The main idea of the
algorithm is to decompose complex nonlinear problem into a set of
locally linear through local learning, and then to learn feature
selection in the margin theory. To establish margin-based error
function in weighted feature space, the benefits of the introduction
of the Expectation–Maximization algorithm are to solve the nearest
neighbor of a given sample, which is unknown before learning. To
improve the performance of feature selection, the large margin
principle in [6] is adopted into our paper.

Recently, the problem of subspace learning has received a lot
of interests in dimensionality reduction and feature selection for
high-dimensional data. Popular dimensionality reduction algo-
rithms include principal component analysis (PCA) [24], linear
discriminant analysis (LDA) [16], locality preserving projection
(LPP) [25], neighborhood preserving embedding (NPE) [26], graph
optimization for dimensionality reduction with sparsity con-
straints (GODRSC) [27]. These algorithms can be interpreted in a
unified graph embedding framework based on Laplacian matrix in
[28]. A framework for joint feature selection and subspace
learning was presented in [8], where authors reformulated the
subspace learning problem and used ‘2,1-norm on the projection
matrix to obtain row-sparsity of the solution, this enabled to
select relevant features and learn transformation simultaneously.
Feature selection is also closely related to distance metric learning.
In [29], large margin component analysis (LMCA) for the low-
dimensional projection of the inputs was proposed. The algorithm
aimed at separating points in different classes by a large margin.
Authors in [30] use the maximum margin score for discriminatively
optimizing the structure of Bayesian network classifiers. For k-nearest
neighbor (k-NN) classification from labeled samples, a Mahanalobis
distance metric was learned by semidefinite programming in [31].
The metric was trained with the goal that the k-nearest neighbors
belong to the same class while examples from different classes were
separated by a large margin. In [7], authors introduced a margin
based on feature selection criterion and applied it to measure the
quality of sets of features. Experiments showed that the algorithms
based on the large margin were effectiveness for feature selection.

In order to obtain the sparse solution, regularization was intro-
duced into most algorithms previously mentioned. In [32,33], feature
selection regularized by ‘1-norm showed interesting performance.
However, due to the non-differentiability of ‘1-norm, the regularized
problem was solved using sub-gradient method, which was complex
and inefficient. In [34], a so-called Hybrid Huberized SVM (HHSVM)
algorithm was proposed by compositing ‘1 and ‘2 norms
(‘2,1-norm). Instead of individually using one of these two norms,
this composite regularization had more favorable properties as it
investigated the structure of the problem. This type of regularization
was also introduced into the multi-task feature selection [35]. In [36],
the Nesterov method was used to optimize the objective function
with ‘2,1-norm regularization, and an Euclidean space projection
algorithm with a linear time complexity was proposed to improve the
computational efficiency of the Nesterov method. In [15], the
‘2,1-norm regularized objective function is formulated and the
Nesterov method in [36] was used to solve the objective function.
In [1], another efficient algorithm for the ‘2,1-norm regularization
was proposed. This algorithm did not require the gradient of the
objective function and experiments showed its efficiency and fast
convergence rate. Feature selection algorithm based on subspace
learning and ‘2,1-norm was proposed in [8], and the algorithm in [1]
was used to solve the objective function.
3. The proposed algorithm

In this section, we will propose an algorithm termed as Large
Margin Subspace Learning (LMSL). This algorithm considers the
large margin of samples. It is more suitable to feature selection for
high dimensional data.

In what follows, we will firstly introduce margin-based metric
function. Then the motivation and theoretical basis of LMSL will
be proposed. After that the objective function will be formulated
and the solution method will be proposed. Finally, the imple-
mentation and analysis of the algorithm will be discussed.

3.1. Margin-based metric function

The margin plays a crucial role in current machine learning
research. The basic idea of marginal feature selection is to
measure the importance of features by the margin of samples.

Let A¼ ½x1, . . . ,xn�
T ARn�d be a training data set, where xn is the

nth data sample containing d features, Y ¼ ½y1, . . . ,yn� is the
corresponding class labels, and dbn. The margin of xj was defined
in [7] as the following:

Definition 1. Let A be a training data set, xj be a sample from A,
and w be a weight vector, then the margin of xj about w is

rjðwÞ ¼
X

kAMj

dwðxj,xkÞ�
X

kAHj

dwðxj,xkÞ, ð1Þ
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where dwð�,�Þ is a distance function about w, Hj ¼ fi91r irn,yi ¼

yj,ia jg and Mj ¼ fi91r irn,yiayjg.

A variety of distances dwð�,�Þ have been defined in some
references. The Euclidean distance in [7] defined the distance as
the following:

dwðx,yÞ ¼ 1
2Jx�yJw, ð2Þ

with JzJw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðz

2
i w2

i Þ

q
.

In [6], the authors developed the expectation to obtain the
nearest neighbors for a given sample with the same class and
different classes. Two types of nearest neighbors for the sample xj

are defined in Eqs. (3) and (4), one with the same class (called
nearest hit) and the other with the different class (called nearest
miss):

NHðxjÞ ¼ dðxj,NHðxjÞÞ ¼
X
iAHj

Pðxi ¼NHðxjÞÞJxj�xiJ, ð3Þ

and

NMðxjÞ ¼ dðxj,NMðxjÞÞ ¼
X

iAMj

Pðxi ¼NMðxjÞÞJxj�xiJ, ð4Þ

where NMðxjÞ and NHðxjÞ denote the expectation computed with
respect to Hj and Mj, respectively. Pðxi ¼NHðxjÞÞ and Pðxi ¼NMðxjÞÞ

are the probabilities of sample xi being the nearest hit or miss of
xj, respectively. These probabilities are estimated by the standard
kernel density kðdÞ ¼ expð�d=sÞ:

Pðxi ¼NMðxjÞÞ ¼
kðJxj�xiJÞP

lAMj
kðJxj�xlJÞ

, ð5Þ

and

Pðxi ¼NHðxjÞÞ ¼
kðJxj�xiJÞP

lAHj
kðJxj�xlJÞ

: ð6Þ

This margin is defined by

rjðwÞ ¼ dðxj,NHðxjÞÞ�dðxj,NMðxjÞÞ

¼
X

iAMj

Pðxi ¼NMðxjÞÞJxj�xiJ

0
@

1
A

�
X
iAHj

Pðxi ¼NHðxjÞÞJxj�xiJ

0
@

1
A: ð7Þ

In the sections that follow, we will define a new margin in
subspace.

3.2. Basic notation for LMSL

The main step of classic subspace learning algorithms (e.g. LPP,
LLE [37]) is to incorporate neighborhood information which is
often represented by k nearest neighbors or Laplacian graph of the
data set and compute a transformation matrix which maps the
data points to projection subspace. This linear transformation
optimally preserves local neighborhood information, which may
not be true in the presence of copious irrelevant features [6]. We
propose an algorithm to overcome the weakness of these sub-
space learning algorithms. This algorithm differs from the pre-
viously mentioned algorithm in two aspects. Firstly, the nearest
neighbors are computed by expectation. Secondly, the margin
between nearest hit and nearest miss in the projection subspace
is optimally retained.

Let W ðARd�p,dbp) be a projection subspace (or matrix),
where d is the number of features, p is the dimension of the
subspace. NMW ðxjÞ and NHW ðxjÞ denote the expectation in
the subspace W . Distance of xj to NMW ðxjÞ and NHW ðxjÞ in the
subspace W can be written as the following:

dW ðxj,NMW ðxjÞÞ ¼ Jðxj�NMW ðxjÞÞ
T WJ2

¼ ðxj�NMW ðxjÞÞ
T WWT

ðxj�NMW ðxjÞÞ, ð8Þ

and

dW ðxj,NHW ðxjÞÞ ¼ Jðxj�NHW ðxjÞÞ
T WJ2

¼ ðxj�NHW ðxjÞÞ
T WWT

ðxj�NHW ðxjÞÞ, ð9Þ

where

NHW ðxjÞ ¼
X
iAHj

PW ðxi ¼NHW ðxjÞÞJxj�xiJ, ð10Þ

and

NMW ðxjÞ ¼
X

iAMj

PW ðxi ¼NMW ðxjÞÞJxj�xiJ ð11Þ

the probability PW ð�Þ can be estimated via the standard kernel
density kðdÞ ¼ expð�d=sÞ:

PW ðxi ¼NMW ðxjÞÞ ¼
kðJWðxj�xiÞJÞP

lAMj
kðWðJxj�xlJÞÞ

, ð12Þ

and

PW ðxi ¼NHW ðxjÞÞ ¼
kðWðJxj�xiJÞÞP

lAHj
kðWðJxj�xlJÞÞ

: ð13Þ

The margin of xj in the subspace W is defined as

rjðWÞ ¼ dW ðxj,NMW ðxjÞÞ�dW ðxj,NHW ðxjÞÞ: ð14Þ

3.3. Objective function

Our aim is to search a matrix W so that the margins are
maximized when the nearest neighbors are projected into it.

Before defining objective function, we define two column
vectors hjARn and mjARn (n is the number of samples) as the
following:

hji ¼
PW ðxi ¼NHW ðxjÞÞ, iAHj

0 otherwise

�
ð15Þ

and

mji ¼
PW ðxi ¼NMW ðxjÞÞ, iAMj

0 otherwise

�
ð16Þ

Then the margin rjðWÞ can be rewritten as

rjðWÞ ¼ ðej�mjÞ
T AWWT AT

ðej�mjÞ

�ðej�hjÞ
T AWWT AT

ðej�hjÞ

¼ trðWT AT DjAWÞ, ð17Þ

where ej is a column vector with j-th element equal to one and
others equal to zeros and

Dj ¼ ðej�mjÞðej�mjÞ
T
�ðej�hjÞðej�hjÞ

T : ð18Þ

An ‘2,1-norm regularization term is added into the objective
function to encourage row-sparsity of the solution. Our objective
function is

min
W

FðWÞ ¼�
Xn

j ¼ 1

rjðWÞþlJWJ2,1

¼ trðWT AT DAWÞþlJWJ2,1

s:t: WT AT AW ¼ I, ð19Þ

where D¼�
Pn

j ¼ 1 Dj, DARn�n, l is the regularization parameter.
Obviously, Dj in Eq. (18) is indefinite matrix, D is also indefinite
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matrix, so trðWT AT DAWÞ is nonconvex function with respect to
W , and the objection function FðWÞ is nonconvex.

The introduction of ‘2,1-norm is based on the following two
reasons:
�
 The ‘2,1-norm can guarantee row-sparsity of the projection
matrix W (elements in a row are all zero). Hence it is able to
discard the irrelevant features and transform the relevant ones
simultaneously [8].

�
 In [1], authors proposed a simple and efficient algorithm for
‘2,1-norm regularization. This algorithm did not require the
gradient of the objective function, and was proven conver-
gence in theory. Hence our objective function can be efficiently
solved by this algorithm.

Two reasons for the introduction of constraint WT AT AW¼ I are:
�
 To avoid a trivial solution of the objective function.

�
 As the objective function is nonconvex, it is difficult to

obtain an optimal solution. The introduction of constraint
enables us to obtain a sub-optimal solution of the objective
function, and we will show in Section 3.4 that the objective
function can be solved by using a simple and efficient
algorithm.

3.4. An efficient algorithm to solve the objective function with

constraints

In this section, we discuss how to solve the optimization
problem equation (19). Solving process consists of two steps.

Firstly, let AW ¼U, then we can solve the following optimiza-
tion problem:

min
U

trðUT DUÞ,

s:t: UT U ¼ I, ð20Þ

where D is the symmetric matrix, and I is the identity matrix of
the size p� p. The optimal solution of Eq. (20) is

Un
¼Gr , ð21Þ

where the columns of the matrix Gr are r eigenvectors of D

corresponding to the last r smallest eigenvalues [38].
Secondly, in order to obtain the optimal solution of the

objective function, we need to solve the equation AW ¼Un. Note
that AW ¼Un is linear equation, there are three possibilities for
the solution of the equation in [8]:
(1)
 The linear equation has infinitely many solutions.

(2)
 The linear equation has unique solution.

(3)
 The linear equation has no solution.
One situation in (1) which is most common is only discussed in
our paper. Discussion on other situations can be found in [8].

When linear equation about AW ¼Un has infinitely many
solutions, we can solve the following optimal problem to obtain
optimal solution for Eq. (19):

min
W

JWJ2,1,

s:t: AW ¼Un: ð22Þ

The solution of optimization problem in Eq. (22) is given in [1].
3.5. LMSL algorithm

We first need to compute matrix D of Eq. (19) for LMSL.
The algorithm to compute matrix D is listed in Algorithm 1.
AARn�d is the training samples, YARn is the sample labels, and
W0ARd�p whose elements are the initialization of the one is
projection matrix. Kernel width parameter s is determined by 5-
fold cross-validation.

Algorithm 1. Compute D of Eq. (19).
Initialization:

A is the training samples, Y is the sample labels, W0 is the
projection matrix and s is the kernel width parameter.

Output: D
1:
 Set D¼0.

2:
 for i¼1 to n do

3:
 Calculate PW ðxi ¼NMW ðxjÞÞ and PW ðxi ¼NHW ðxjÞÞ by Eqs.

(12) and (13), respectively.

4:
 Calculate hj and mj by Eqs. (15) and (16), respectively.
5:
 D¼D�Dj
6:
 end for
LMSL is listed in Algorithm 2. To be simple, p is the number

class of samples. Regularization parameter l is determined by 5-
fold cross-validation. LMSL is convergence because the algorithm
to solve Eq. (22) has proven to be convergence in [1].

Algorithm 2. Large Margin Subspace Learning for Feature Selec-
tion (LMSL).
Initialization:

A is the training samples, Y is the sample labels, W0 is the

projection matrix, s is the kernel width parameter and l is
the regularization parameter.

Output: W

1:
 Calculate matrix D of Eq. (19) by Algorithm 1.

2:
 Calculate eigenvector and eigenvalue of D.

3:
 Obtain Gr whose columns are r eigenvectors of D

corresponding to the r smallest eigenvalues

4:
 Use algorithm in [1] to compute W by A, Gr and l

5:
 return W
Algorithm 2 consists of three major steps:
(1)
 Calculate margins of samples via Algorithm 1.

(2)
 Compute the eigenvalues of the matrix D in Eq. (19). The

computational time is negligible as it is executed only once
and the size of D is usually not large in the context under
discussion.
(3)
 To solve Eq. (22), we use iterative algorithm in [1]. The
convergence property of Eq. (22) has been theoretically
proven in [1] and fast convergence rate has also been
experimentally verified.
It should be noticed that Algorithm 2 achieves a suboptimal
solution of Eq. (19), as its feasible region is limited to the solution
space of Eq. (22), which is smaller than the original one. However,
experiments have shown that its performance is favored even
with a suboptimal solution.

4. Experiment study

In this section, several experiments are conducted to illustrate
the effectiveness of our algorithm for feature selection.



Table 1
Summary of the benchmark data sets.

Data set # features # instance # classes

ARP 2400 130 10

PIE 2420 210 10

LUNG 3312 203 5

CARC 9182 174 11

PROS 5966 102 2

TOX 5748 171 4

ORL 10 304 100 10

CLLS 11 340 111 3

COIL 16 384 350 10
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The proposed LMSL algorithm is applied on nine high-
dimensional data sets, including five image data sets: AR10P(ARP),1

PIE10P(PIE) (see footnote 1), ORLRAWS10P(ORL) (see footnote 1),
TOX-101(TOX) (see footnote 1), COIL,2 and four micro-array data sets:
LUNG,3 CARCINOM(CARC) (see footnote 1), CLL-SUB-101(CLLS) (see
footnote 3), PROSTATE_GE(PROS) (see footnote 3). Detailed informa-
tion of these data sets is listed in Table 1.

The five typical feature selection algorithms are chosen for the
comparison purpose as the following:
(1)
1

2

3

zip?
RFS (Robust Feature Selection) [1].

(2)
 LLFS (Local Linear Feature Selection) [6].

(3)
 SPFS (Similarity Preserving Feature Selection) [15].

(4)
 mRMR (minimum Redundancy Maximum Relevance) [39].

(5)
 TR (Trace-Ratio) [18].
The first two algorithms are closely related with the proposed
LMSL, as LMSL and LLFS both use the large margin principle, and
LMSL benefits from RFS for solving the objective functions effi-
ciently. The later ones are three state-of-the-art feature selection
algorithms with the following characters: mRMR removes redun-
dant features via considering pairwise feature correlation mea-
surement. SPFS handles feature redundancy by similarity
preserving. Both of these algorithms are in the class of filter-
based model. TR represents data set structures by using the
Laplacian graph, and it has a good performance compared with
other similar algorithms (such as Laplacian Score [17]). The
regularization parameter l of the three algorithms (LMSL, LLFS,
RFS) is determined by 5-fold cross validation. The kernel width s
of LMSL and LLFS is also tuned with 5-fold cross validation. For
each data set, we randomly select 70% samples as the training
data and use the rest as the test data. The above process is
repeated 20 times in order to obtain the averaged performance.
The linear SVM is then applied on the selected features in order to
compare the classification accuracy.

4.1. Accuracy of classification

4.1.1. Average accuracy of classification

The classification accuracy results in Table 2 are obtained by
SVM using the top 50,100,150, . . . ,1000 features selected for each
algorithm. The boldfaced values are the highest ones or the ones
without significant difference to the highest.

It can be observed in Table 2 that the proposed LMSL has an
advantageous classification accuracy. It possesses the highest
average accuracy on six test sets, and has only slight differences
http://featureselection.asu.edu/datasets.php

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

https://sites.google.com/site/feipingnie/file/NIPS2010_data.

attredirects=0
(about 1%) compared with the best ones when tested on the other
four data sets. The last row shows the classification accuracy
averaged on all these data sets. LMSL has a 0.5% higher classifica-
tion accuracy than LLFS, which also utilizes the large margin
principle. Compared with the other four algorithms, LMSL per-
forms notably better than the other four algorithms, with 4–7%
higher accuracy.

4.1.2. Classification accuracy of top n% features

Classification Accuracy of Top n% features is obtained by
using the first n% selected features for SVM classification. In
this experiment n% is set to 30% and 60%. Results are
reported in Tables 3 and 4 show that the classification perfor-
mance has the similar trend to the average accuracy in the
precedent experiment.

4.2. Sensitivity of the regularization parameter l

Fig. 1 shows that the insensitivity of LMSL with respect to the
regularization parameter l. Classification accuracy results in all
data sets do not obviously change with different values of l
chosen from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. But we have also
noticed that the classification accuracy results of LLFS and RFS
have relatively large changes in some data sets (e.g. ARP, CLLS,
TOX). We conclude that the proposed algorithm is more suitable
for a variety of applications.

4.3. Sensitivity of the kernel width s

Fig. 2 shows that the insensitivity of LMSL and LLFS with
respect to the kernel width s. Classification accuracy of the test
data sets does not obviously change with different values of s
chosen from {0.1, 0.5, 1,5, 10, 50, 100}. The insensitivity of the
parameters favors the applications of the proposed algorithm. The
insensitivity of kernel width s for LLFS was also experimentally
confirmed in [6].

4.4. Starting point W0 for LMSL

Different from the above experiments where W0 in Algorithm
2 is initialized by the all-one matrix, in this experiment, we test
the performance of the algorithm with different W0. For each data
set, LMSL is executed 100 times with randomly generated W0

each time. One hundred results of corresponding classification
accuracy are illustrated in Fig. 3. It can be observed that
the accuracy values vary little with respect to different W0.
This shows the insensibility of LMSL with respect to the initiali-
zation W0.

4.5. CPU time

LMSL is closely related with LLFS and RFS, Therefore, we
compare the computational time of these three algorithms in this
section. The results are obtained by averaging the running time of
each algorithm. These algorithms are implemented with MATLAB
(R2011b edition 64 bit)and run in PC (Microsoft Windows 7 64
bit, Intel Core 2 Duo CPU, 8 GB of RAM). As illustrated in the last
row of Table 5, RFS is the less time consuming on all these sets,
followed by LMSL. It should be noticed that LMSL just consumes
slightly more time than RFS on some data sets, such as PROS
(0.06 s). However, LLFS is much time consuming than LMSL, e.g.
LLFS is 10 times slower than LMSL on ARP and COIL. LMSL is
slower than RFS because it needs to compute margins of samples
in order to obtain better performance for feature selection. The

http://featureselection.asu.edu/datasets.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://sites.google.com/site/feipingnie/file/NIPS2010_data.zip?attredirects=0
https://sites.google.com/site/feipingnie/file/NIPS2010_data.zip?attredirects=0


Table 2
Average accuracy of classification (%), p-value Z0:05. (The value in the parentheses is p-value.)

Data set LMSL proposed RFS [1] LLFS [6] SPFS [15] mRMR [39] TR [18]

ARP 93.89714.90 (1.00) 70.89730.21 (0.00) 93.04720.81 (0.53) 87.40715.58 (0.00) 86.88713.75 (0.00) 90.60733.70 (0.04)

PIE 98.6372.51 (0.29) 98.7370.74 (0.26) 98.8971.23 (0.58) 95.7974.80 (0.00) 95.9175.67 (0.00) 99.0971.20 (1.00)

LUNG 95.6172.67 (1.00) 95.1073.57 (0.36) 93.1074.28 (0.00) 94.7371.80 (0.07) 94.5272.74 (0.04) 95.0371.93 (0.23)

CARC 93.1076.48 (0.16) 86.7877.11 (0.00) 94.2676.85 (1.00) 86.5877.81 (0.00) 87.1476.97 (0.00) 88.19710.14 (0.00)

PROS 92.3177.77 (1.00) 91.6378.31 (0.45) 91.4677.82 (0.34) 77.93717.64 (0.00) 79.27714.01 (0.00) 85.98713.50 (0.00)

TOX 91.38720.62 (1.00) 88.78740.22 (0.14) 90.44725.79 (0.54) 80.08728.58 (0.00) 79.79722.10 (0.00) 81.51737.17 (0.00)

ORL 96.31710.18 (1.00) 89.0478.48 (0.00) 93.88711.89 (0.03) 87.73714.41 (0.00) 86.78711.65 (0.00) 94.8178.92 (0.13)

CLLS 68.35741.92 (0.56) 65.03719.33 (0.01) 69.46728.36 (1.00) 63.91717.90 (0.00) 62.35714.17 (0.00) 62.79745.83 (0.00)

COIL 99.4472.59 (0.33) 97.5871.81 (0.00) 99.4472.07 (1.00) 96.4077.43 (0.00) 96.7278.10 (0.00) 78.8578.23 (0.00)

AVE 92.11 87.06 91.55 85.62 85.48 86.32

Table 3
Classification accuracy of top 30% features, p-value Z0:05. (The value in the parentheses is p-value.)

Data set LMSL proposed RFS [1] LLFS [6] SPFS [15] mRMR [39] TR [18]

ARP 94.13722.55 (1.00) 77.25747.30 (0.00) 93.38726.50 (0.63) 88.75726.64 (0.00) 87.75722.96 (0.00) 91.00740.39 (0.09)

PIE 98.2974.64 (0.05) 99.3670.96 (1.00) 99.0072.38 (0.39) 97.7173.52 (0.00) 97.7175.24 (0.01) 99.0773.71 (0.56)

LUNG 96.0273.21 (0.66) 95.7875.68 (0.47) 94.7775.21 (0.02) 95.1672.54 (0.03) 94.9273.57 (0.02) 96.2572.42 (1.00)

CARC 93.4573.00 (0.36) 91.90711.92 (0.02) 93.9773.29 (1.00) 89.91711.04 (0.00) 91.2977.03 (0.00) 91.5574.35 (0.00)

PROS 91.88710.69 (1.00) 87.81725.60 (0.00) 90.94714.29 (0.41) 88.5979.53 (0.00) 80.47732.77 (0.00) 89.06717.99 (0.02)

TOX 92.83720.84 (1.00) 92.64720.95 (0.90) 84.43723.94 (0.00) 89.43732.75 (0.04) 91.51739.16 (0.45) 87.36731.89 (0.00)

ORL 95.0077.24 (0.24) 93.25719.14 (0.02) 95.13710.84 (0.36) 94.13710.05 (0.05) 95.13710.84 (0.36) 96.0076.84 (1.00)

CLLS 70.14755.40 (1.00) 69.86742.51 (0.90) 69.14764.10 (0.68) 64.29764.88 (0.02) 65.00765.20 (0.04) 67.43729.56 (0.20)

COIL 99.7370.53 (0.64) 99.8270.23 (1.00) 99.7771.03 (0.86) 99.3671.92 (0.17) 95.2377.73 (0.00) 99.7371.49 (0.76)

AVG 92.38 89.74 91.17 89.70 88.78 90.83

Table 4
Classification accuracy of top 60% features, p-value Z0:05. (The value in the parentheses is p-value.)

Data set LMSL proposed RFS [1] LLFS [6] SPFS [15] mRMR [39] TR [18]

ARP 94.25722.43 (1.00) 86.00750.26 (0.00) 94.00729.21 (0.88) 89.63723.21 (0.00) 89.63723.21 (0.00) 91.63738.34 (0.14)

PIE 99.2970.75 (0.05) 99.4372.66 (0.37) 99.1472.23 (0.09) 97.9373.32 (0.00) 98.0073.52 (0.00) 99.7970.49 (1.00)

LUNG 96.4173.62 (1.00) 96.2573.19 (0.79) 95.5574.95 (0.20) 95.3972.43 (0.07) 95.3172.83 (0.06) 95.7073.57 (0.25)

CARC 92.8473.84 (0.80) 92.0777.01 (0.24) 93.0275.47 (1.00) 91.2978.28 (0.04) 91.2978.28 (0.04) 91.6472.90 (0.04)

PROS 90.9478.12 (1.00) 88.59722.90 (0.07) 89.84712.21 (0.28) 89.38711.72 (0.12) 89.38711.72 (0.12) 88.75716.86 (0.06)

TOX 93.11722.96 (1.00) 93.11724.09 (1.00) 85.94727.53 (0.00) 90.75728.07 (0.15) 90.75733.69 (0.17) 90.47721.54 (0.08)

ORL 96.2577.57 (1.00) 94.88713.47 (0.19) 96.0079.47 (0.79) 96.1379.52 (0.89) 96.0079.47 (0.79) 96.0077.50 (0.77)

CLLS 70.00741.68 (1.00) 69.86746.81 (0.95) 69.00763.82 (0.67) 64.86755.94 (0.03) 65.29759.53 (0.04) 68.71724.47 (0.48)

COIL 99.6471.34 (0.57) 99.7370.27 (0.68) 99.8270.66 (1.00) 99.4171.50 (0.22) 95.2377.73 (0.00) 99.4571.77 (0.30)

AVG 92.52 91.10 91.37 90.53 90.10 91.35
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iterations of LLFS spend much time, especially when the number
of samples is large or the dimension of samples is very high.

4.6. Discussions

In this section, we provide further discussions on the proposed
LMSL algorithm. The five algorithms in comparison with
LMSL can be classified into three classes. The first class consists
of algorithms that do not investigate local structures of sample,
including RFS, SPFS and mRMR. The second class, including TR,
uses Laplacian graph to represent structure of samples. The third
class, including LLFS, integrates the margin into the algorithm. As
illustrated by classification results, LMSL significantly outper-
forms the algorithms of the first class, which shows the impor-
tance of integrating the margin of the nearest neighbors between
nearest hit and nearest miss for feature selection. The algorithm
TR in the second class, although uses structure of samples, does
not perform as well as the LMSL on most data sets. This shows the
limitation of using graph for representing structure of samples in
feature selection. The algorithm LLFS in the third class integrates
the margin into the algorithm as well. Comparison results show
that the proposed LMSL performs better than LLFS on six data
sets. On the other four data sets, LMSL does not perform so well as
LLFS. This may be due to that only suboptimal solution is obtained
for LMSL. However it should be noticed that LMSL requires less
computational time than LLFS on these test data sets. LLFS is even
ten times more consuming on some high-dimensional data sets
such as COIL. Moreover LMSL is insensitive to the kernel width s,
the regularization parameter l and the initialization. These
properties make it robust and stable in many applications.
5. Conclusion and future work

In this paper, we propose a novel feature selection algorithm,
which maximizes the margin in the projection subspace W . An
‘2,1-norm regularization is also added to encourage row-sparsity
of the solution. Experiment results show that it has competitive
with some other existing algorithms. Nevertheless, only subopti-
mal solution of the algorithm is obtained in this paper. One of the
future work is how to obtain the global optimum of LMSL. In
addition, we will further investigate to incorporate the proposed
algorithm within the image processing domain (such as visual-
oriented grayscale frames in [40], mathematical morphology in



Fig. 1. Sensibility of the regularization parameter l.

Fig. 2. Sensibility of the parameter s.
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Fig. 3. Sensibility of the starting point W0 .

Table 5
CPU time (in seconds) of three algorithms performed on nine data sets.

Data set LMSL proposed RFS [1] LLFS [6]

ARP 5.79 2.25 60.51

PIE 13.56 4.30 131.12

LUNG 14.99 5.83 15.36

CARC 30.19 12.09 472.56

PROS 3.73 4.10 15.33

TOX 16.09 8.02 84.70

ORL 9.77 6.38 70.84

CLLS 7.75 9.31 58.61

COIL 219.16 51.36 2725.59

AVG 35.67 11.52 403.85
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[41-43], etc.) to improve accordingly the performance of existed
algorithms.
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