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Nonnegative Least-Mean-Square Algorithm
Jie Chen, Cédric Richard, Senior Member, IEEE, José Carlos M. Bermudez, Senior Member, IEEE, and

Paul Honeine, Member, IEEE

Abstract—Dynamic system modeling plays a crucial role in the
development of techniques for stationary and nonstationary signal
processing. Due to the inherent physical characteristics of systems
under investigation, nonnegativity is a desired constraint that can
usually be imposed on the parameters to estimate. In this paper,
we propose a general method for system identification under non-
negativity constraints. We derive the so-called nonnegative least-
mean-square algorithm (NNLMS) based on stochastic gradient de-
scent, and we analyze its convergence. Experiments are conducted
to illustrate the performance of this approach and consistency with
the analysis.

Index Terms— Adaptive filters, adaptive signal processing, least
mean square algorithms, nonnegative constraints, transient anal-
ysis.

I. INTRODUCTION

I Nmany real-life phenomena including biological and phys-
iological ones, due to the inherent physical characteristics

of systems under investigation, nonnegativity is a desired con-
straint that can be imposed on the parameters to estimate in
order to avoid physically absurd and uninterpretable results.
For instance, in the study of a concentration field or a thermal
radiation field, any observation is described with nonnegative
values (ppm, joule). Nonnegativity as a physical constraint has
received growing attention from the signal processing commu-
nity during the last decade. For instance, consider the following
nonnegative least-square inverse problem:

(1)

with a real matrix of rank , an
-length real vector, and an -length real vector. de-

notes the Euclidean 2-norm and the th entry of the vector.
This problem has been addressed in various contexts, with ap-
plications ranging from image deblurring in astrophysics [1] to
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deconvolution of emission spectra in chemometrics [2]. Another
similar problem is the nonnegative matrix factorization (NMF),
which is now a popular dimension reduction technique [3]–[5].
Given a matrix with nonnegative entries, the squared error
version of this problem can be stated as follows:

(2)

where denotes the Frobenius norm. This problem is closely
related to the blind deconvolution one, and has found direct ap-
plication in hyperspectral imaging [6]. Separation of nonnega-
tive mixture of nonnegative sources has also been considered in
[7], [8].
Over the last 15 years, a variety of methods have been de-

veloped to tackle nonnegative least-square problems (NNLS).
Active set techniques for NNLS use the fact that if the set of vari-
ableswhich activate constraints is known, then the solutionof the
constrained least-square problem can be obtained by solving an
unconstrained one that only includes inactive variables. The ac-
tive set algorithm of Lawson andHanson [9] is a batch resolution
technique for NNLS problems. It has become a standard among
themost frequentlyusedmethods. In [10],Bro andDe Jong intro-
duced a modification of the latter, called fast NNLS, which takes
advantage of the special characteristics of iterative algorithms in-
volving repeated use of nonnegativity constraints. Another class
of tools is the class of projected gradient algorithms [11]–[14].
They are based on successive projections on the feasible region.
In [15], Lin used this kind of algorithms for NMF problems.
Low memory requirements and simplicity make algorithms in
this class attractive for large scale problems. Nevertheless, they
are characterized by slow convergence rate if not combined
with appropriate step size selection. The class of multiplicative
algorithms is very popular for dealing with NMF problems [4],
[16]. Particularly efficient updates were derived in this way for
a large number of problems involving nonnegativity constraints
[17]. These algorithms however require batch processing, which
is not suitable for online system identification problems.
In this paper, we consider the problem of system identifica-

tion under nonnegativity constraints on the parameters to es-
timate. The Karush-Kuhn-Tucker (KKT) conditions are estab-
lished for any convex cost function, and a fixed-point iteration
strategy is then applied in order to derive a gradient descent al-
gorithm. Considering the square-error criterion as a particular
case, a stochastic gradient scheme is presented. A convergence
analysis of this algorithm is proposed. The resulting model ac-
curately predicts the algorithm behavior for both transient and
steady-state conditions. Finally, experiments are conducted to
evaluate the algorithm performance and its consistency with the
analysis.

1053-587X/$26.00 © 2011 IEEE
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II. SYSTEM IDENTIFICATION WITH NON-NEGATIVITY
CONSTRAINTS

Consider an unknown system, only characterized by a set of
real-valued discrete-time responses to known stationary inputs.
The problem is to derive a transversal filter model

(3)

with the vector of the model parame-
ters, and the ob-
served data vector. The input signal and the desired output
signal are assumed zero-mean stationary. The sequence

accounts for measurement noise and modeling errors.
Due to the inherent physical characteristics of systems under

investigation, in this paper, nonnegativity is a desired constraint
that is imposed on the coefficient vector . Therefore, the
problem of identifying the optimum model can be formalized
as follows:

(4)

with a continuously differentiable and strictly convex cost
function in , and the optimal solution to the constrained
optimization problem.

A. A Fixed-Point Iteration Scheme

In order to solve the problem (4), let us consider its La-
grangian function given by [18]

where is the vector of nonnegative Lagrange multipliers. The
Karush-Kuhn-Tucker conditions must necessarily be satisfied at
the optimum defined by , , namely

where the symbol stands for the gradient operator with re-
spect to . Using , these equations
can be combined into the following expression:

(5)

where the extra minus sign is just used to make a gradient de-
scent of apparent. To solve (5) iteratively, two important
points have to be noticed. The first point is that
is also a gradient descent of if is a symmetric posi-
tive definite matrix. The second point is that equations of the
form can be solved with a fixed-point iteration al-
gorithm, under some conditions on function , by considering
the problem . Implementing this strategy with (5)
leads us to the component-wise gradient descent algorithm

(6)
with a positive step size required to get a contraction
scheme and to control the convergence rate. Function

in (6) is the th entry of a diagonal matrix . It is an arbi-
trary positive function of . Some criteria are defined only
for inputs with positive entries, e.g., Itakura-Saito distance,
Kullback-Leibler divergence. If necessary, this condition can be
managed by an appropriate choice of the step size parameter.
Assume that . Nonnegativity of is guaran-
teed if

(7)

If , condition (7) is clearly satisfied and non-
negativity does not impose any restriction on the step size. Con-
versely, if , nonnegativity of holds
if

(8)

Using a single step size in for all entries of
so that

(9)
the update equation can be written in vector form as

(10)

where the weight adjustment direction , whose th entry is
defined as follows

(11)

is a gradient descent direction because . It
should be noted that condition (9) on the step size guaran-
tees the nonnegativity of for all , but does not ensure the
stability of the algorithm.

B. The Nonnegative Least-Mean-Square (NNLMS) Algorithm

Let us now consider the mean-square error criterion
to be minimized with respect to , that is,

(12)

where we have included the nonnegativity constraint only on the
optimum solution because is defined for all , that is,
for all positive and negative entries . The gradient of
can be easily computed as

(13)

with the autocorrelation matrix of and the cor-
relation vector between and . Using (10) and (11)
with for all , the update rule for minimizing the
mean-square error under nonnegativity constraints is given by

(14)

where is the diagonal matrix with diagonal entries given
by . Following a stochastic gradient approach, the second-
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order moments and are replaced in (14) by the instan-
taneous estimates and , respectively. This
leads us to the stochastic approximation of (14) given by1

(15)

where stands for the diagonal matrix with diagonal en-
tries given by , and .
It is interesting to notice how the term in the update term

on the right-hand side (RHS) of (15) affects the dynamics of the
coefficient update when compared with the well-known LMS
algorithm [19]. Note that the extra multiplying factor in
the update term of the th row of (15), which is not present
in the LMS update, provides extra control of both the mag-
nitude and the direction of the weight update, as compared to
LMS. For a fixed step size , the update term for the th com-
ponent of is proportional to , the sto-
chastic gradient component. Thus, compared to the LMS sto-
chastic gradient component , the constrained algo-
rithm includes the multiplying factor . A negative
will then change the sign of the LMS adjustment, which on av-
erage tends to avoid convergence to negative coefficients of the
unconstrained solution. Thus, coefficients that would normally
converge, on average, to negative values using unconstrained
LMS will tend to converge to zero using the constrained algo-
rithm. In addition, close to zero will tend to slow its own
convergence unless the magnitude of is very large.
Finally, is clearly a stationary point of (15).
In the following, the adaptive weight behavior of the adaptive

algorithm (15), called nonnegative LMS, is studied in the mean
and mean-square senses for a time-invariant step size .

III. MEAN BEHAVIOR ANALYSIS

We shall now propose a model to characterize the mean be-
havior of the nonnegative LMS algorithm. Fig. 1 shows a block
diagram of the problem studied in this paper. The input signal

and the desired output signal are assumed stationary
and zero-mean. Let us denote by the solution of the uncon-
strained least-mean-square problem

(16)

whose solution satisfies the Wiener-Hopf equations

(17)

The residual signal in Fig. 1 ac-
counts for measurement noise and modeling errors. It is as-
sumed in the following that is stationary, zero-mean with
variance and statistically independent of any other signal.
Thus, .
The adaptive algorithm (15) attempts to estimate the optimum
for the constrained problem (12). The analytical determina-

1Note that .

Fig. 1. Adaptive system under study.

tion of the optimal solution is not trivial in general. In the
particular case of independent and identically distributed (i.i.d.)
input samples, however, where is the identity ma-
trix. In this case, the Karush-Kuhn-Tucker conditions imply that
is obtained by turning the negative entries of to zero

(18)

where . The minimum mean-square error
produced by solution is then

(19)

with the variance of .

A. Mean Weight Behavior Model

Defining the weight-error vector as follows:

the update (15) can be written as

(20)

Using leads
us to the following expression:

(21)

Taking the expectation of (21), neglecting the statistical depen-
dence of and ,2 and using that
yields

(22)

The first expectation on the RHS of (22) is given by

(23)

2This assumption is less restrictive than the well-known independence as-
sumption [19, p. 247], as it does not require be Gaussian.
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In order to evaluate the second expectation on the RHS
of (22), let us compute the th component of the vector

. We have

(24)

Taking the expectation, defining , and
neglecting the statistical dependence of and , we
obtain

(25)

This implies that

where denotes the vector whose th entry is defined by
. Using these results with (22) yields the following mean

weight-error vector update equation:

(26)

This equation requires second-order moments defined by the
matrix in order to update the first-order one provided
by . A recursive model will be derived for in
Section IV, see (39). That model can be used along with (26) to
predict the mean weight behavior of the algorithm. Neverthe-
less, we have found that a sufficiently accurate and more intu-
itive mean behavior model can be obtained using the following
separation approximation

(27)

Using (27) in (26) we obtain the following result

(28)

Approximation (27) assumes that

(29)

In general, (29) is valid when the adaptive weights are far from
convergence, as the mean weight-error component tends to be
much larger than the weight-error fluctuation about the mean.
For correlated , the level of the weight-error fluctuations at
convergence tends to bemuch less than the values of the nonzero
optimal weights. For white input signals tends to zero
for those indexes corresponding to the positive coefficients of
. In this case, approximation (29) will in fact tend to elimi-

nate the weight estimation error at convergence. Extensive sim-
ulation results have shown that the simplified model in (28)
yields a prediction of the mean weight behavior which is suf-
ficient for design purposes. Furthermore, this simplification al-

lows the more detailed analytical study of the mean weight be-
havior shown in the next section.

B. Special Case of a White Input Signal

In general, the behavior of (28) can become very complex
to be studied analytically [20]. In order to obtain analytical re-
sults that allow some understanding of the mean weight be-
havior, we study here the particular case of i.i.d. and drawn
from a zero-mean distribution. Unit variance is also assumed
without loss of generality. Using in (28) yields the com-
ponent-wise expression

(30)

Function in (30) is a parabola in with
roots at and . It reaches

its maximum at . Fixed points are found by
solving , which yields
or . This result is consistent with solution (18)
where

if
otherwise

(31)

with the th entry of .
Let us derive conditions ensuring convergence of (30) to 0

and . Writing , where the index has
been dropped to simplify the notation, we obtain the following
difference equation known as the logistic map [20]–[22]

(32)

with , which is assumed nonzero. Fixed points
defined in (31) now correspond to and , respec-
tively. Convergence of the logistic map to these values depends
on parameter and on the initial condition as follows. See
[20]–[22] for details and Fig. 2 for illustration.
Case 1)

An illustration of this case is shown in Fig. 2 (left).
The fixed point attracts all the trajectories
originating in the interval . The logistic

map is identically equal to for if

or . Outside this interval, it
diverges to .

Case 2)
The fixed point attracts all the trajectories
originating in the interval [0;1]. The logistic map

is identically equal to 0 for if
or 1. It diverges to if .

Case 3)
An illustration of this case is shown in Fig. 2 (right).
The fixed point attracts all the trajecto-
ries originating in ]0;1[. With the initial conditions

or , we have for all
. It can be shown that the logistic map di-

verges to if .
Case 4)

Fixed points become unstable. New fixed points ap-
pear between which the system alternates in stable
cycles of period , with tending to infinity as
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Fig. 2. Convergence of the logistic map, in the Case 1 (left) and in the Case 3 (right). The dashed line is the line of equation .

increases. This case may even lead to a chaotic be-
havior, and falls out of the scope of our study.

To derive conditions for convergence of the difference (30) to
0 or , wemust consider separately components of
associated with positive or negative unconstrained optimum ,
respectively. On the one hand, based on the analysis of the lo-
gistic map (32), convergence of (30) to 0 corresponds to the
conditions on and satisfying Case 1 and Case 2 above.
This yields

(33)

in the case where . If , these two conditions be-
come and . On the other hand, and
must obey the conditions presented in Case 3 for convergence
of (30) to . This leads to

(34)

in the case where . Finally, combining these inequalities
leads to the following theoretical conditions for convergence of

:

(35)

or, using also (33) and (34), for convergence of

(36)

Conditions (35) and (36) on and show that there is
more freedom in choosing for small values of . They
guarantee convergence of the difference (30).

C. Simulation Examples for the First-Order Moment Analysis

This section presents simulation examples to verify the va-
lidity of the first-order moment analysis of the nonnegative LMS
algorithm. We illustrate the accuracy of the model (30) through
a first example where inputs and noise are i.i.d. and
drawn from a zero-mean Gaussian distribution with variance

and , respectively. The impulse response
is given by

(37)

The initial impulse response is drawn from the uniform
distribution , and kept unchanged for all the simula-
tions. The algorithm’s stability limit was determined experimen-
tally to be . As usually happens with adaptive
algorithms, this limit is more restrictive than the mean weight
convergence limit given by (36), as stability is determined by
the weight fluctuations [19]. The mean value of each
coefficient is shown in Fig. 3 for and

. The simulation curves (solid line) were
obtained from Monte Carlo simulation averaged over 100 re-
alizations. The theoretical curves (dashed line) were obtained
from model (30). One can notice that all the curves are perfectly
superimposed and, as predicted by the result (18), each coeffi-
cient tends to as goes to infinity.
It is interesting to note that convergence towards the solu-

tion agrees with the theoretically predicted behavior of
(32). For each positive entry of , the corresponding value
of is in ]0;1[. This corresponds to Case 1 in
Section III-B, where the fixed point attracts all the trajec-
tories and converges to zero. It can also be verified that
each associated with a negative entry is in ]1;3]. This cor-
responds to Case 3 where attracts all the trajectories
and .
The second simulation example illustrates the accuracy of the

model (30) for inputs correlated in time. We consider a
first-order AR model given by

with . The noise is i.i.d. and drawn from a zero-mean
Gaussian distribution with variance , so that
as in the first example. The other parameters of the initial

experimental setup remain unchanged, except for the step size
values. In order to verify the model’s accuracy also for large step
sizes we performed the simulations for
and . The mean value of
each coefficient is shown in Fig. 4. As before, the simulation
curves (solid line) and the theoretical curves (dashed line) are
superimposed. It can be noticed that no longer converges
to since the input samples are now correlated. We
can easily verify that using , and
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Fig. 3. Convergence of the coefficients in the case where input and noise are i.i.d. Two different step sizes are considered: on the left
figure, and on the right figure. The theoretical curves (dashed line) obtained from (30) and simulation curves (solid line) are perfectly superimposed.

Fig. 4. Same experiment as in Fig. 3 except that input sequence is generated by a first-order AR process. Two different step sizes are considered:
on the left figure, and on the right figure.

at convergence of the nonnegative LMS
algorithm.

IV. SECOND-ORDER MOMENT ANALYSIS

We now present a model for the behavior of the second-
order moments of the adaptive weights. To allow further anal-
ysis progress, we assume in this section that the input is
Gaussian.

A. Second Moment Behavior Model

Using , neglecting the statistical
dependence of and , and using the properties assumed
for yields an expression for the mean-square estimation
error (MSE)

(38)

Equation (26) clearly shows that the mean behavior of each
coefficient is a function of a single diagonal entry of the

matrix . In this case, approximation (28) could be
used without compromising the accuracy of the resulting
mean behavior model. This accuracy has been verified through
Monte Carlo simulations in Section III-C. The MSE in (38),
however, is a function of the trace of . Thus, the
effect of the second order moments of the weight-error vector
entries on the MSE behavior becomes more significant than in
(26), and in general cannot be neglected. Thus, we determine
a recursion for starting again from the weight error
update (21).
Premultiplying (21) by its transpose, taking the expected

value, and using the statistical properties of ,3 yields

(39)

3The two important properties of used in evaluating (39) are its inde-
pendence of any other signal and its zero-mean.
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Fig. 5. Convergence of in the case where input and noise are i.i.d. Two different step sizes are considered: on the left figure, and
on the right figure. The theoretical curves (black line) obtained from (38) and (39) and simulation curves (gray line) are perfectly superimposed.

Fig. 6. Same experiment as in Fig. 5 except that input sequence is generated by a first-order AR process. Two different step sizes are considered:
on the left figure, and on the right figure.

where matrices to are defined by

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

The expected values in (40)–(48) are calculated in the following.
In order to keep the calculations mathematically tractable, the
following statistical assumptions are employed:

A1: The input vector is zero-mean Gaussian.

A2: The weight-error vector is statistically indepen-
dent of . The reasoning for this approximation
has been discussed in detail in [23].
A3: The statistical dependence of and
is neglected. This assumption follows the same reasoning
valid for A2, see [23].
A4: and are statistically independent
given A2. This is because is a linear combi-
nation of the entries of . Thus, this approxima-
tion follows basically the same reasoning discussed in [23]
to justify A2.
: This expected value has been already calculated in

(23). Remember that

(49)

: Basic linear algebra gives

(50)
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: Neglecting the statistical dependence of and
yields

(51)

: The th entry of the matrix within the expectation
in is given by

(52)

Using A2,
and

(53)

where denotes the so-called Hadamard product.
: Defining as the diagonal matrix with diagonal

entries given by , we first note that

(54)

Now, using A2 and A3, the expectation can be approxi-
mated as

(55)

Finally, using again A2 we obtain

(56)

: Basic linear algebra gives

(57)

Under A1 and applying the same methodology used to de-
rive [24, Eq. (29)],

(58)

: Using basic algebra,A2 andA3 as done to obtain (55),
we have

(59)

Finally, under A1 and applying the same methodology as
in [24, Equation (29)], yields

(60)

: Using basic algebra we obtain

(61)

Using A4, becomes

(62)
The expected value for
zero-mean Gaussian signal has already been eval-
uated in [24, eqs. (7)–(9)], using results from [25].
Following the same procedure as in [24] yields

(63)

Now, taking the expected value with respect to

(64)

Then we obtain the final result

(65)
: Computing the th entry of matrix within the

expectation, and using A2, yields

(66)

For a zero-mean Gaussian signal (A1), we know that
[26]

(67)

The expectation cannot be
evaluated directly, as the statistics of are unknown.
Approximate expressions can be obtained using numerous
different approaches. We have chosen to use the following
approximation which preserves relevant information about
the second moment behavior of the adaptive weights while
keeping the mathematical problem tractable. We write

(68)
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Fig. 7. Convergence of with step size , in the case where input is i.i.d. on the left figure, and generated by a first-order AR process
on the right figure. Compared to Figs. 5 (right) and 6 (right), the variance of the noise has been increased from to 1.

Now, writing

(69)

we see that the fluctuations in are pro-
portional to . Using the same reasoning for
we note that the covariance in (68) is proportional to .
The higher order moments of the entries of in (68)
will then be proportional to with . Thus, for suffi-
ciently small values of , neglecting these terms yields the
approximation

(70)

This approximation is supported by the simulation results
presented in Section IV-B. Substituting the two equations
above into the expression of leads to

(71)

The first right-hand term of (71) can be expressed as
follows

(72)

The second and third right-hand terms write

(73)

This leads to the following close-form expression:

(74)

Using the expected values to in (39), we finally
obtain a recursive analytical model for the behavior of .
This result can be used to study the convergence properties
of , and can be applied to design.4 The next section
illustrates the model accuracy in predicting the nonnegative
LMS algorithm behavior.

B. Simulations for the Second-Order Moment Analysis

This section presents simulation examples to check the accu-
racy of model (39). Figs. 5 and 6 show the behavior of the excess
MSE corresponding to the exper-
iments that has been conducted in Section III-C. The simulation
curves (gray line) were obtained from Monte Carlo simulation
averaged over 100 realizations. The theoretical curves (black
line) were obtained frommodel (39). Note the model’s accuracy
even for step sizes as large as (left side of Fig. 6). Also note
that the theoretical value of the minimum excess mean-square
error is represented in Fig. 5.5 It can be observed that

tends to as goes to infinity. Fig. 7 high-
lights the performance of the model for uncorrelated and corre-
lated input signals through the same experimental setup as

4This model can also be used in (26) for the mean weight behavior if needed.
However, our experience has been that the simplified model given by (28) suf-
fices for predicting the mean weight behavior for most practical needs. It also
makes the analytical study presented in Section III-B tractable.
5It can be shown, from (17)–(19), that in the

case where .
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described before, except that the noise variance is now set
to 1. All these experiments illustrate the accuracy of the model,
which can provide important guidelines for the use of the non-
negative LMS algorithm in practical applications.

V. CONCLUSION

In many real-life phenomena, due to the inherent physical
characteristics of systems under investigation, nonnegativity is
a desired constraint that can be imposed on the parameters to
estimate in order to avoid physically absurd and uninterpretable
results. In this paper, we proposed a general method for system
identification under nonnegativity constraints, and we derived
the so-called nonnegative LMS based on stochastic gradient
descent. This algorithm switches automatically between a gra-
dient descent mechanism and a gradient ascent one depending
whether the nonnegativity constraint is violated or not. Finally,
we analyzed the algorithm convergence in the mean sense and
in the mean-square sense. In future research efforts, we intend
to explore these models in practical applications since they pro-
vide important guidelines to algorithm designers. We also plan
to derive variants of this approach, e.g., in the spirit of the nor-
malized-LMS and the sign-LMS algorithms.
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