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Abstract—Adaptive filtering algorithms operating in repro-
ducing kernel Hilbert spaces have demonstrated superiority over
their linear counterpart for nonlinear system identification. Un-
fortunately, an undesirable characteristic of these methods is that
the order of the filters grows linearly with the number of input
data. This dramatically increases the computational burden and
memory requirement. A variety of strategies based on dictionary
learning have been proposed to overcome this severe drawback. In
the literature, there is no theoretical work that strictly analyzes the
problem of updating the dictionary in a time-varying environment.
In this paper, we present an analytical study of the convergence
behavior of the Gaussian least-mean-square algorithm in the
case where the statistics of the dictionary elements only partially
match the statistics of the input data. This theoretical analysis
highlights the need for updating the dictionary in an online way,
by discarding the obsolete elements and adding appropriate ones.
We introduce a kernel least-mean-square algorithm with -norm
regularization to automatically perform this task. The stability
in the mean of this method is analyzed, and the improvement of
performance due to this dictionary adaptation is confirmed by
simulations.
Index Terms—Nonlinear adaptive filtering, reproducing kernel,

sparsity, online forward-backward splitting.

I. INTRODUCTION

F UNCTIONAL characterization of an unknown system
usually begins by observing the response of that system

to input signals. Information obtained from such observations
can then be used to derive a model. As illustrated by the block
diagram in Fig. 1, the goal of system identification is to use pairs

of inputs and noisy outputs to derive a function that
maps an arbitrary system input into an appropriate output
. Dynamic system identification has played a crucial role in

the development of techniques for stationary and non-stationary
signal processing. Adaptive algorithms use an error signal to
adjust the model coefficients , in an online way, in order to
minimize a given objective function. Most existing approaches
focus on linear models due to their inherent simplicity from
conceptual and implementational points of view. However,
there are many practical situations, e.g., in communications
and biomedical engineering, where the nonlinear processing of
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Fig. 1. Kernel-based adaptive system identification.

signals is needed. Unlike linear systems which can be uniquely
identified by their impulse response, nonlinear systems can be
characterized by representations ranging from higher-order sta-
tistics, e.g., [1], [2], to series expansion methods, e.g., [3], [4].
Polynomial filters, usually called Volterra series based filters
[5], and neural networks [6] have been extensively studied over
the years. Volterra filters are attractive because their output is
expressed as a linear combination of nonlinear functions of
the input signal, which simplifies the design of gradient-based
and recursive least squares adaptive algorithms. Nevertheless,
the considerable number of parameters to estimate, which goes
up exponentially as the order of the nonlinearity increases is a
severe drawback. Neural networks are proven to be universal
approximators under suitable conditions [7]. It is, however,
well known that algorithms used for neural network training
suffer from problems such as being trapped into local minima,
slow convergence and great computational requirements.
Recently, adaptive filtering in reproducing kernel Hilbert

spaces (RKHS) has become an appealing tool in many practical
fields, including biomedical engineering [8], remote sensing
[9]–[12] and control [13], [14]. This framework for nonlinear
system identification consists of mapping the original input
data into a RKHS , and applying a linear adaptive filtering
technique to the resulting functional data. The block diagram
presented in Fig. 1 presents the basic principles of this strategy.
The input space is a compact of is
a reproducing kernel, and is the induced RKHS
with its inner product. Usual kernels involve, e.g., the radially
Gaussian and Laplacian kernels, and the -th degree polyno-
mial kernel. The additive noise is assumed to be white and
zero-mean, with variance . Considering the least-squares
approach, given input vectors and desired outputs ,
the identification problem consists of determining the optimum
function in that solves the problem

(1)
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with a real-valued monotonic regularizer on and
a positive regularization constant. By virtue of the representer
theorem [15], the function can be written as a kernel ex-
pansion in terms of available training data, namely,

. The above optimization problem becomes

(2)

where is the vector with -th entry . On-
line processing of time series data raises the question of how to
process an increasing amount of observations as new data
is collected. Indeed, an undesirable characteristic of problem
(1)–(2) is that the order of the filters grows linearly with the
number of input data. This dramatically increases the compu-
tational burden and memory requirement of nonlinear system
identification methods. To overcome this drawback, several au-
thors have focused on fixed-size models of the form

(3)

We call the dictionary, which has to be learnt
from input data, and the order of the kernel expansion by
analogy with linear transversal filters. The subscript allows
us to clearly distinguish dictionary elements from
input data . Online identification of kernel-based models gen-
erally relies on a two-step process at each iteration: a model
order control step that updates the dictionary, and a parameter
update step. This two-step process is the essence of most adap-
tive filtering techniques with kernels [16].
Based on this scheme, several state-of-the-art linear methods

were reconsidered to derive powerful nonlinear generalizations
operating in high-dimensional RKHS [17], [18]. On the one
hand, the kernel recursive least-squares algorithm (KRLS) was
introduced in [19]. It can be seen as a kernel-based counterpart
of the RLS algorithm, and it is characterized by a fast con-
vergence speed at the expense of a quadratic computational
complexity in . The sliding-window KRLS and extended
KRLS algorithms were successively derived in [20], [21] to
improve to tracking ability of the KRLS algorithm. More
recently, the KRLS tracker algorithm was introduced in [22],
with ability to forget past information using forgetting strate-
gies. This allows the algorithm to track non-stationary input
signals based on the idea of the exponentially-weighted KRLS
algorithm [16]. On the other hand, the kernel affine projec-
tion algorithm (KAPA) and, as a particular case, the kernel
normalized LMS algorithm (KNLMS), were independently
introduced in [23]–[26]. The kernel least-mean-square algo-
rithm (KLMS) was presented in [27], [28], and has attracted
substantial research interest because of its linear computational
complexity in , superior tracking ability and robustness. It
however converges more slowly than the KRLS algorithm. The
KAPA algorithm has intermediate characteristics between the
KRLS and KLMS algorithms in terms of convergence speed,
computational complexity and tracking ability. A very detailed
analysis of the stochastic behavior of the KLMS algorithm
with Gaussian kernel was provided in [29], and a closed-form
condition for convergence was recently introduced in [30]. The
quantized KLMS algorithm (QKLMS) was proposed in [31],

and the QKLMS algorithm with -norm regularization was
introduced in [32]. Note that the latter uses -norm in order
to sparsify the parameter vector in the kernel expansion (3).
A subgradient approach was considered to accomplish this
task, which contrasts with the more efficient forward-backward
splitting algorithm recommended in [33], [34]. A recent trend
within the area of adaptive filtering with kernels consists of
extending all the algorithms to give them the ability to process
complex input signals [35], [36]. The convergence analysis of
the complex KLMS algorithm with Gaussian kernel presented
in [37] is a direct application of the derivations in [29]. Finally,
the quaternion kernel least-squares algorithm was recently
introduced in [38].
All the above-mentioned methods use different learning

strategies to decide, at each time instant , whether
deserves to be inserted into the dictionary or not. One of the
most informative criteria uses the so-called approximate linear
dependency (ALD) condition. To ensure the novelty of a can-
didate for becoming a new dictionary element, this criterion
checks that it cannot be well approximated as a linear combina-
tion of the samples that are already in the dictionary
[19]. Other well-known criteria include the novelty criterion
[39], the coherence criterion [24], the surprise criterion [40],
and closed-ball sparsification criterion [41]. Without loss of
generality, we focus on the KLMS algorithm with coherence
criterion due to its simplicity and effectiveness, and because its
performance are well described and understood by theoretical
models [29], [30] that are exploited here. However, the dic-
tionary update procedure studied in this paper can be adapted
to the above-mentioned filtering algorithms and sparsification
criteria without too much effort.
Except the above-mentioned works [32], [33], most of the

existing strategies for dictionary update are only able to incor-
porate new elements into the dictionary, and to possibly forget
the old ones using a forgetting factor. This means that they
cannot automatically discard obsolete kernel functions, which
may be a severe drawback within the context of a time-varying
environment. Recently, sparsity-promoting regularization was
considered within the context of linear adaptive filtering. All
these works propose to use, either the -norm of the vector
of filter coefficients as a regularization term, or some other re-
lated regularizers to limit the bias relative to the unconstrained
solution. The optimization procedures consist of subgradient
descent [42], projection onto the -ball [43], or online for-
ward-backward splitting [44]. Surprisingly, this idea was little
used within the context of kernel-based adaptive filtering. To
the best of our knowledge, only [33] uses projection for least-
squares minimization with weighted block -norm regulariza-
tion, within the context of multi-kernel adaptive filtering. There
is no theoretical work that analyzes the necessity of updating
the dictionary in a time-varying environment. In this paper, we
present an analytical study of the convergence behavior of the
Gaussian least-mean-square algorithm in the case where the sta-
tistics of the dictionary elements only partially match the sta-
tistics of the input data. This analysis highlights the need for
updating the dictionary in an online way, by discarding the ob-
solete elements and adding appropriate ones. Thus, we intro-
duce a KLMS algorithm with -norm regularization in order to
automatically perform this task. The stability of this method is
analyzed and, finally, it is tested with experiments.
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II. BEHAVIOR ANALYSIS OF GAUSSIAN KLMS ALGORITHM
WITH PARTIALLY MATCHING DICTIONARY

Signal reconstruction from a redundant dictionary has been
extensively addressed during the last decade [45], both theoret-
ically and experimentally. In order to represent a signal with a
minimum number of elements of a dictionary, an efficient ap-
proach is to incorporate a sparsity-inducing regularization term
such as an -norm one in order to select the most informative
patterns. On the other hand, a classical result of adaptive fil-
tering theory says that, as the length of LMS adaptive filters in-
creases, their mean-square estimation error increases and their
convergence speed decreases [18]. This suggests to discard ob-
solete dictionary elements of KLMS adaptive filters in order to
improve their performance in non-stationary environments. To
check this property formally, we shall now analyze the behavior
of the KLMS algorithm with Gaussian kernel depicted in [29] in
the case where a given proportion of the dictionary elements has
distinct stochastic properties from the input samples. No theo-
retical work has been carried out so far to address this issue. This
model will allow us to formally justify the need for updating the
dictionary in an online way. It is interesting to note that the gen-
eralization presented hereafter was made possible by radically
reformulating, and finally simplifying, the mathematical deriva-
tion given in [29]. Both models are, however, strictly equivalent
in the stationary case. This simplification is one of the contribu-
tions of the paper. It might allow us to analyze other variants of
the Gaussian KLMS algorithm, including the multi-kernel case,
in future research works.

A. KLMS Algorithms

Several versions of the KLMS algorithm have been proposed
in the literature. The two most significant versions consist of
considering the problem (1) and performing gradient descent
on the function in , or considering the problem (2) and
performing gradient descent on the parameter vector , respec-
tively. The former strategy is considered in [28], [31] for in-
stance, while the latter is applied in [24]. Both need the use of
an extra mechanism for controlling the order of the kernel
expansion (3) at each time instant . We shall now introduce
such a model order selection stage, before briefly introducing
the parameter update stage we recommend.
1) Dictionary Update: Coherence is a fundamental param-

eter that characterizes a dictionary in linear sparse approxima-
tion problems. It was redefined in [24] within the context of
adaptive filtering with kernels as follows:

(4)

where is a unit-norm kernel. The coherence criterion suggests
inserting the candidate input into the dictionary pro-
vided that its coherence remains below a given threshold

(5)

where is a parameter in determining both the level
of sparsity and the coherence of the dictionary. Note that the
quantization criterion introduced in [31] consists of comparing

with a threshold, where de-
notes the -norm. It is thus equivalent to the original coherence

criterion in the case of radial kernels such as the Gaussian one
considered hereafter.1

2) Filter Parameter Update: At iteration , upon the arrival
of new data , one of the following alternatives holds. If

does not satisfy the coherence rule (5), the dictionary
remains unaltered. On the other hand, if condition (5) is met, the
kernel function is inserted into the dictionary where it is
then denoted by . The least-mean-square algorithm
applied to the parametric form (2) leads to the algorithm [24]
recalled hereafter. For simplicity, note that we have voluntarily
omitted the regularization term in (2), that is, .
• Case 1:

(6)

• Case 2:

(7)

where is the estimation error with
.

The coherence criterion guarantees that the dictionary dimen-
sion is finite for any input sequence due to the com-
pactness of the input space ([24], proposition 2).

B. Mean Square Error Analysis

Consider the nonlinear system identification problem shown
in Fig. 1, and the finite-order model (3) based on the Gaussian
kernel

(8)

where is the kernel bandwidth. The order of the model
(3) or, equivalently, the size of the dictionary , is assumed
known and fixed throughout the analysis. The nonlinear system
input data are supposed to be zero-mean, inde-
pendent, and identically distributed Gaussian vector. We con-
sider that the entries of can be correlated, and we denote by

the autocorrelation matrix of the input data.
It is assumed that the input data or the transformed inputs
by kernel are locally or temporally stationary in the en-
vironment needed to be analyzed. The estimated system output
is given by

(9)

with . The corresponding estima-
tion error is defined as

(10)

Squaring both sides of (10) and taking the expected value leads
to the mean square error (MSE)

(11)

1Radial kernels are defined as with
a completely monotonic function on , i.e., the -th derivative of satisfies

for all . See [46]. Decreasing of on
ensures the equivalence between the coherence criterion and the quantization
criterion.
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where is the correlation matrix of the ker-
nelized input , and is the cross-correla-
tion vector between and . It has already been proved that

is positive definite [29] if the input data are indepen-
dent and identically distributed Gaussian vectors, and, as a con-
sequence, the dictionary elements and are statisti-
cally independent for . Thus, the optimum weight vector
is given by

(12)

and the corresponding minimum MSE is

(13)

Note that expressions (12) and (13) are the well-known Wiener
solution and minimum MSE, [17], [18], respectively, where the
input signal vector has been replaced by the kernelized input
vector.
In order to determine , we shall now calculate the corre-

lation matrice using the statistical properties of the input
and the kernel definition. Let us introduce the following no-

tations

(14)

with

(15)

and

(16)

where is the identity matrix, and is the null
matrix. From ([47], p. 100), we know that the moment gener-
ating function of a quadratic form , where is a
zero-mean Gaussian vector with covariance , is given by

(17)

Making in (17), we find that the -th element
of is given by

(18)

with , and and are the main-diagonal
and off-diagonal entries of , respectively. In (18), is the

correlation matrix of vector (see expression (19)
for an illustration of this notation with ), is the
identity matrix, and denotes the determinant of a matrix.
The two cases and correspond to different forms
of the matrix , given by

(19)

where is the intercorrelation matrix of
the dictionary elements. Compared with [29], the formulations
(18), (19), and other reformulations pointed out in the following,
allow to address more general problems by making the analyses
tractable. In particular, in order to evaluate the effects of a mis-
match between the input data and the dictionary elements, we
shall now consider the case where that they do not necessarily
share the same statistical properties. This situation will occur
in a time-varying environment with most of the existing dictio-
nary update strategies. Indeed, they are only able to incorporate
new elements into the dictionary, and cannot automatically dis-
card obsolete ones. To the best of our knowledge, only [32],
[33] suggested to use a sparsity-promoting -norm regulariza-
tion term to allow minor contributors in the kernel dictionary
to be automatically discarded, both without theoretical results.
However, on the one hand, the algorithm [33] was proposed in
the multi-kernel context. On the other hand, the algorithm [32]
uses a subgradient approach and has quadratic computational
complexity in .
We shall now suppose that the first dictionary elements

have the same autocorrelation
matrix as the input , whereas the other elements

have a distinct autocorrelation
matrix denoted by . In this case, in (19) is given
by

(20)

which allows to calculate the correlation matrix of the ker-
nelized input via (18). Note that in (19) reduces to

, with if , otherwise 0, in the case
considered in [29].

C. Transient Behavior Analysis

We shall now analyze the transient behavior of the algorithm.
We shall successively focus on the convergence of the weight
vector in the mean sense, i.e., , and of the mean square
error defined in (11).
1) Mean Weight Behavior: The weight update equation of

KLMS algorithm is given by

(21)

where is the step size. Defining the weight error vector
leads to the weight error vector update equation

(22)

From (9) and (10), and the definition of , the error equation
is given by

(23)

and the optimal estimation error is

(24)

Substituting (23) into (22) yields

(25)
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Simplifying assumptions are required in order to make the
study of the stochastic behavior of mathematically fea-
sible. The so-called modified independence assumption (MIA)
suggests that is statistically independent of . It is
justified in detail in [48], and shown to be less restrictive than
the independence assumption [17]. We also assume that the fi-
nite-order model provides a close enough approximation to the
infinite-order model with minimum MSE, so that .
Taking the expected value of both sides of (25) and using these
two assumptions yields

(26)

This expression corresponds to the LMS mean weight behavior
for the kernelized input vector .
2) Mean Square Error Behavior: Using (23) and the MIA,

the second-order moments of the weights are related to theMSE
through [17]

(27)

where is the autocorrelation matrix of the
weight error vector denotes the minimum
MSE, and is the excess MSE (EMSE). The
analysis of the MSE behavior (27) requires a model for ,
which is highly affected by the kernelization of the input signal
. An analytical model for the behavior of was derived

in [29]. Using simplifying assumptions derived from the MIA,
it reduces to the following recursion

(28a)

with

(28b)

The evaluation of expectation (28b) is an important step in the
analysis. It leads to extensive calculus if proceeding as in [29]
because, as is a nonlinear transformation of a quadratic
function of the Gaussian input vector , it is neither zero-mean
nor Gaussian. In this paper, we provide an equivalent approach
that greatly simplifies the calculation. This allows us to consider
the general case where there is possibly a mismatch between
the statistics of the input data and the dictionary elements.
Using the MIA to determine the -th element of in
(28b) yields

(29)

where . This expression can be written as

(30)

where the -th entry of is given by
, with and

(31)

Using expression (17) leads us to

(32)

with

(33)

and

(34)

which uses the same block definition as in (20). Again, note that
in the above equation reduces to in the regular

case considered in [29]. This expression concludes
the calculation.

D. Steady-State Behavior

We shall now determine the steady-state of the recursion
(28a). Observing that it only involves linear operations on
the entries of , we can rewrite this equation in a vec-
torial form in order to simplify the derivations. Let
denote the operator that stacks the columns of a matrix on top
of each other. Vectorizing the matrices and by

and , it can be verified
that (28a) can be rewritten as

(35)

with

(36)

Matrix is found by the use of the following definitions
• is the identity matrix of dimension ;
• is involved in the product . It is a block-
diagonal matrix, with on its diagonal. It can thus be
written as , where denotes the Kronecker
tensor product;

• is involved in the product , and can be
written as ;

• with defined as in (30), namely,

(37)

with .
Note that to are symmetric matrices, which implies that
is also symmetric. Assuming convergence, the closed-formed

solution of the recursion (35) is given by

(38)

where denotes the vector in steady-state, which is
given by

(39)

From (27), the steady-state MSE is finally given by

(40)

where is the steady-state EMSE.
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TABLE I
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1

TABLE II
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2

III. SIMULATION RESULTS

In this section, we present simulation examples to illustrate
the accuracy of the derived model, and to study the properties
of the algorithm in the case where the statistics of the dictionary
elements partially match the statistics of the input data. This first
experiment provides the motivation for deriving the online dic-
tionary learning algorithm described subsequently, which can
automatically discard the obsolete elements and add appropriate
ones.
Two examples with abrupt variance changes in the input

signal are presented hereafter. In each situation, the size of
the dictionary was fixed beforehand, and the entries of the
dictionary elements were i.i.d. randomly generated from a
zero-mean Gaussian distribution. Each time series was divided
into two subsequences. For the first one, the variance of this
distribution was set as equal to the variance of the input signal.
For the second one, it was abruptly set to a smaller or larger
value in order to simulate a dictionary misadjustment. All the
parameters were chosen within reasonable ranges collected
from the literature.
Notation: In Tables I and II, dictionary settings are compactly

expressed as . This has to be inter-
preted as: Dictionary is composed of vectors with en-
tries i.i.d. randomly generated from a zero-mean Gaussian dis-
tribution with standard deviation , and vectors with entries
i.i.d. randomly generated from a zero-mean Gaussian distribu-
tion with standard deviation .
Example 1: Consider the problem studied in [29], [49], [50],

for which

(41)

where the output signal was corrupted by a zero-mean
i.i.d. Gaussian noise with variance . The input
sequence was i.i.d. randomly generated from a zero-mean
Gaussian distribution with two possible standard deviations,

or 0.15, to simulate an abrupt change between two
subsequences. The overall length of the input sequence was

. Distinct dictionaries, denoted by and , were
used for each subsequence. The Gaussian kernel bandwidth
was set to 0.02, and the KLMS step-size was set to 0.01.

Two situations were investigated. For the first one, the standard
deviation of the input signal was changed from 0.35 to 0.15 at
time instant . Conversely, in the second one, it was
changed from 0.15 to 0.35.
Table I presents the simulation conditions, and the experi-

mental results based on 200Monte Carlo runs. The convergence
iteration number was determined in order to satisfy

(42)

Note that and concern convergence
in the second subsequence, with the dictionary . The learning
curves are depicted in Figs. 2 and 3.
Example 2: Consider the nonlinear dynamic system studied

in [29], [51] where the input signal was a sequence of statisti-
cally independent vectors

(43)

with correlated samples satisfying .
The second component of , and , were i.i.d. zero-mean
Gaussian sequences with standard deviation both equal to

, or to , during the two subsequences of input
data. We considered the linear system with memory defined by

(44)

where and a nonlinear Wiener function

(45)

(46)

where is the output signal. It was corrupted by a zero-mean
i.i.d. Gaussian noise with variance . The initial
condition was considered. The bandwidth of the
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Fig. 2. Learning curves for Example 1 where and . See the first row of Table I. (a) . (b)
. (c) .

Fig. 3. Learning curves for Example 1 where and . See the second row of Table I. (a) . (b)
. (c) .

Gaussian kernel was set to 0.05, and the step-size of the KLMS
was set to 0.05. The length of each input sequence was .
As in Example 1, two changes were considered. For the first one,
the standard deviation of and was changed from

to at time instant . Conversely,
for the second one, it was changed from to .
Table II presents the results based on 200 Monte Carlo runs.

Note that and concern convergence

in the second subsequence, with dictionary . The learning
curves are depicted in Figs. 4 and 5.
1) Discussion: We shall now discuss the simulation results.

It is important to recognize the significance of the mean-square
estimation errors provided by the model, which perfectly
match the averaged Monte Carlo simulation results. The model
separates the contribution of the minimum MSE and EMSE,
and makes comparisons possible. The simulation results clearly
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Fig. 4. Learning curves for Example 2 with and . See the first row of Table II. (a)
. (b) . (c) .

Fig. 5. Learning curves for Example 2 with and . See the second row of Table II. (a)
. (b) . (c) .

show that adjusting the dictionary to the input signal has a pos-
itive effect on the performance when a change in the statistics
is detected. This can be done by adding new elements to the
existing dictionary, while at the same time possibly discarding
the obsolete elements. Considering a completely new dictionary

led us to the lowest MSE and minimum MSE
in Example 1. Adding new elements to the existing dictionary
provided the lowest MSE and minimum MSE in
Example 2. This strategy can however have a negative effect
on the convergence behavior of the algorithm.
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IV. KLMS ALGORITHM WITH
FORWARD-BACKWARD SPLITTING

We shall now introduce a KLMS-type algorithm based on
forward-backward splitting, which can automatically update the
dictionary in an online way by discarding the obsolete elements
and adding appropriate ones.

A. Forward-Backward Splitting Method in a Nutshell

Consider first the following optimization problem [52]

(47)

where is a convex empirical loss function with Lipschitz
continuous gradient and Lipschitz constant . Function

is a convex, continuous, but not necessarily differentiable
regularizer, and is a positive regularization constant. This
problem has been extensively studied in the literature, and can
be solved with forward-backward splitting [53]. In a nutshell,
this approach consists of minimizing the following quadratic
approximation of at a given point , in an iterative way,

(48)

since for any . Simple algebra shows
that the function admits a unique minimizer, denoted
by , given by

(49)

with . It is interesting to note that can
be interpreted as an intermediate gradient descent step on the
cost function . Problem (49) is called the proximity oper-
ator for the regularizer , and is denoted by .
While this method can be considered as a two-step optimiza-
tion procedure, it is equivalent to a subgradient descent with
the advantage of promoting exact sparsity at each iteration. The
convergence of the optimization procedure (49) to a global min-
imum is ensured if is a Lipschitz constant of the gradient

. See [52]. In the case consid-
ered in (2), where is a matrix, a well-established
condition ensuring the convergence of to a minimizer of
problem (47) is to require that [53]

(50)

where is the maximum eigenvalue. A companion
bound will be derived hereafter for the stochastic gradient
descent algorithm.
Forward-backward splitting is an efficient method for min-

imizing convex cost functions with sparse regularization. It
was originally derived for offline learning but a generalization
of this algorithm for stochastic optimization, the so-called
FOBOS, was proposed in [54]. It consists of using a stochastic
approximation for at each iteration. This online approach

can be easily coupled with the KLMS algorithm but, for conve-
nience of presentation, we shall now describe the offline setup
based on problem (2).

B. Application to KLMS Algorithm

In order to automatically discard the irrelevant elements from
the dictionary , let us consider the minimization problem
(2) with the sparsity-promoting convex regularization function

(51)

where is the Gram matrix with -th entry
. Problem (51) is of the form (47), and can be solved

with the forward-backward splitting method. Two regulariza-
tion terms are considered.
Firstly, we suggest the use of the well-known -norm func-

tion defined as . This regularization func-
tion is often used for sparse regression and its proximity oper-
ator is separable. Its -th entry can be expressed as [52]

(52)

It is called the soft thresholding operator. One major drawback
is that it promotes biased prediction.
Secondly, we consider an adaptive -norm function of the

form where the is a set of
weights to be dynamically adjusted. The proximity operator for
this regularization function is defined by

(53)

This regularization function has been proven to be more consis-
tent than the usual -norm [55], and tends to reduce the bias
induced by the latter. Weights are usually chosen as

, where is the least-square solution of
the problem (2), and a small constant to prevent the denomi-
nator from vanishing [56]. Since is not available in our on-
line case, we chose at each iteration
. This technique, also referred to as reweighted least-square,
is performed at each iteration of the stochastic optimization
process. Note that a similar regularization term was used in [42]
in order to approximate the -norm.
The pseudocode for KLMS algorithm with sparsity-pro-

moting regularization, called FOBOS-KLMS, is provided in
Algorithm 1. It can be noticed that the proximity operator is
applied after the gradient descent step. The trivial dictionary
elements associated with null coefficients in vector are
eliminated. On the one hand, this approach reduces to the
generic KLMS algorithm in the case . On the other hand,
FOBOS-KLMS appears to be the mono-kernel counterpart of
the dictionary-refinement technique proposed in [33] in
the multi-kernel adaptive filtering context. The stability of
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Algorithm 1: FOBOS-KLMS

1: Initialization
Select the step size , and the parameters of the kernel;
Insert into the dictionary, .

2: for do
3: if

Compute and using (6);
4: elseif

Incorporate into the dictionary;
Compute and using (7);

5: end if
6: using (52) or (53);
7: Remove from the dictionary if .
8: The solution is given as

9: end for

this method is analyzed in the next subsection, which is an ad-
ditional contribution of this paper.

C. Stability in the Mean

We shall now discuss the stability in mean of the FOBOS-
KLMS algorithm. We observe that the KLMS algorithm with
the sparsity inducing regularization can be written as

(54)

with

(55)

where . The function is defined
by

(56)

Up to a variable change in , the general form (54), (55) remains
the same with the regularization function (53). Note that the
sequence is bounded, by for the operator (52),
and by for the operator (53).
Theorem 1: Assume MIA holds. For any initial condition
, the KLMS algorithm with sparsity promoting regularization

(52) and (53) asymptotically converges in the mean sense if the
step-size is chosen to satisfy

(57)

where is the correlation matrix
of the kernelized input , and is the maximum
eigenvalue of .
To prove this theorem, we observe that the recursion (22) for

the weight error vector becomes

(58)

Taking the expected value of both sides, and using the same
assumptions as for (26), leads to

(59)
with the initial condition. To prove the convergence of

, we have to show that both terms on the r.h.s. converge
as goes to infinity. The first term converges to zero if we can
ensure that , where denotes the
2-norm (spectral norm). We can easily check that this condition
is met for any step-size satisfying the condition (57) since

(60)

where is the -th eigenvalue of . Let us show
now that condition (57) also implies that the second term on
the r.h.s. of (59) asymptotically converges to a finite value, thus
leading to the overall convergence of this recursion. First it has
been noticed that the sequence is bounded. Thus,
each term of this series is bounded because

(61)

where or , depending if one uses the regular-
ization function (52) or (53). Condition (57) implies that
and, as a consequence,

(62)

The second term on the r.h.s. of (59) is an absolutely convergent
series. This implies that it is a convergent series. Because the
two terms of (59) are convergent series, we finally conclude
that converges to a steady-state value if condition (57)
is satisfied. Before concluding this section, it should be noticed
that we have shown in [29] that

(63)

Parameters and are given by expression (18) in the case
of a possibly partially matching dictionary.

D. Simulation Results of Proposed Algorithm

We shall now illustrate the good performance of the
FOBOS-KLMS algorithm with the two examples considered in
Section II. Experimental settings were unchanged, and the re-
sults were averaged over 200 Monte Carlo runs. The coherence
threshold in Algorithm 1 was set to 0.01.
One can observe in Figs. 7 and 9 that the size of the dictio-

nary designed by the KLMS with coherence criterion dramati-
cally increases when the variance of the input signal increases.
In this case, this increased dynamic forces the algorithm to pave
the input space with additional dictionary elements. In Figs. 6
and 8, the algorithm does not face this problem since the vari-
ance of the input signal abruptly decreases. The dictionary up-
date with new elements is suddenly stopped. Again, these two
scenarios clearly show the need for dynamically updating the
dictionary by adding or discarding elements. Figs. 6 to 9 clearly
illustrate the merits of the FOBOS-KLMS algorithm with the
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Fig. 6. Learning curves for Example 1 where . (a) MSE. (b) Evolution of the size of dictionary.

Fig. 7. Learning curves for Example 1 where . (a) MSE. (b) Evolution of the size of dictionary.

Fig. 8. Learning curves for Example 2 with . (a) MSE. (b) Evolution of the size of dictionary.

regularizations (52) and (53). Both principles efficiently con-
trol the structure of the dictionary as a function of instantaneous
characteristics of the input signal. They significantly reduce the
order of the KLMS filter without affecting its performance.

V. CONCLUSION

In this paper, we presented an analytical study of the conver-
gence behavior of the Gaussian least-mean-square algorithm in

the case where the statistics of the dictionary elements only
partially match the statistics of the input data. This allowed
us to emphasize the need for updating the dictionary in an
online way, by discarding the obsolete elements and adding
appropriate ones. We introduced the so-called FOBOS-KLMS
algorithm, based on forward-backward splitting to deal with
-normregularization, inorder toautomatically adapt thedictio-

nary to the instantaneous characteristics of the input signal. The
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Fig. 9. Learning curves for Example 2 with . (a) MSE. (b) Evolution of the size of dictionary.

stability in the mean of this method was analyzed, and a condi-
tion on the step-size for convergence was derived. The merits
of FOBOS-KLMS were illustrated by simulation examples.
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