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Abstract—Adaptive networks are suitable for decentralized in-
ference tasks. Recent works have intensively studied distributed
optimization problems in the case where the nodes have to esti-
mate a single optimum parameter vector collaboratively. However,
there are many important applications that are multitask-oriented
in the sense that there are multiple optimum parameter vectors
to be inferred simultaneously, in a collaborative manner, over the
area covered by the network. In this paper, we employ diffusion
strategies to develop distributed algorithms that address multitask
problems by minimizing an appropriate mean-square error crite-
rion with -regularization. The stability and performance of the
algorithm in the mean and mean-square error sense are analyzed.
Simulations are conducted to verify the theoretical findings, and to
illustrate how the distributed strategy can be used in several useful
applications related to target localization and hyperspectral data
unmixing.

Index Terms—Asymmetric regularization, collaborative pro-
cessing, data unmixing, diffusion strategy, distributed optimiza-
tion, multitask learning, target localization.

I. INTRODUCTION

D ISTRIBUTED adaptation over networks has emerged as
an attractive and challenging research area with the ad-

vent of multi-agent (wireless or wireline) networks. Accessible
overviews of recent results in the field can be found in [2]–[4]. In
adaptive networks, the interconnected nodes continually learn
and adapt, as well as perform assigned tasks such as parameter
estimation from observations collected by the dispersed agents.
There are several useful distributed strategies for sequential

data processing over networks including consensus strategies
[5]–[10], incremental strategies [11]–[15], and diffusion strate-
gies [2], [3], [16]–[19]. Incremental techniques require the de-
termination of a cyclic path that runs across the nodes, which is
generally a challenging (NP-hard) task to perform. Besides, in-
cremental solutions can be problematic for adaptation over net-
works because they are sensitive to link failures. On the other
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hand, diffusion strategies are attractive since they are scalable,
robust, and enable continuous adaptation and learning. In ad-
dition, for data processing over adaptive networks, diffusion
strategies have been shown to have superior stability and perfor-
mance ranges [20] than consensus-based implementations. Con-
sequently, we focus on diffusion-type implementations in the se-
quel. The diffusion LMS strategy was proposed and studied in
[16], [17]. Its performance was further examined under various
scenarios and the algorithms applied to a variety of inference
and estimation problems in [18], [19], [21]–[30].
An inspection of the existing literature on distributed algo-

rithms shows that most works focus primarily, though not exclu-
sively [31]–[33], on the case where the nodes have to estimate
a single optimum parameter vector collaboratively. We shall
refer to problems of this type as single-task problems. However,
many problems of interest happen to bemultitask-oriented in the
sense that there are multiple optimum parameter vectors to be
inferred simultaneously and in a collaborativemanner. Themul-
titask learning problem is relevant in several machine learning
formulations and has found applications in web page catego-
rization [34], web-search ranking [35], and disease progression
modeling [36], among other areas. Clearly, this concept is also
relevant in the context of distributed estimation and adaptation
over networks. Initial investigations along these lines for the tra-
ditional diffusion strategy appear in [32], [37]. In this article, we
consider the general situation where there are connected clus-
ters of nodes, and each cluster has a parameter vector to esti-
mate. The estimation still needs to be performed cooperatively
across the network because the data across the clusters may
be correlated and, therefore, cooperation across clusters can be
beneficial. The aim of this paper is to solve this general mul-
titask estimation problem with distributed strategies based on
diffusion adaptation and information exchange between neigh-
boring agents only, and to analyze their performance in terms of
mean-square error and convergence rate.
There are at least three main contributions in this work. To

begin with real-time adaptation and learning from streaming
data is a key aspect of the proposed strategies, which differ-
entiates them from traditional multi-task formulations in the
machine learning literature where solutions tend to be appli-
cation-specific and rely heavily on offline or batch implemen-
tations. Second, the available literature on distributed estima-
tion over networks, including studies on incremental strategies,
consensus strategies and diffusion strategies, focuses largely on
estimating a single parameter vector by the entire network. In
this paper, we extend this setting to the problem of estimating
multiple parameter vectors by interconnected agents. Third, we
introduce a game-theoretic formulation for the multi-task sce-
nario whereas [38] focuses on the single-task case. Moreover,
our framework endows the network with the ability to promote
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Fig. 1. Three types of networks. Through direct links, nodes can communicate with each other in one hop. The single-task and multitask networks can be viewed
as special cases of the clustered multitask network. (a) Single-task network. (a) Single-task network. (c) Clustered multitask network.

asymmetric collaboration between nodes via proper selection of
regularization parameters. We carry out a detailed performance
analysis and derive expressions that explain the effect of various
design parameters on network performance. We remark that the
multi-task formulation of this work can be extended to other
useful scenarios, such as applications involving Kernel-based
learning along the lines studied in [39]–[46].

II. NETWORK MODELS AND MULTITASK LEARNING

We start with a summary of main symbols and notation:

Normal font denotes scalars.

Boldface small letters denote vectors. All
vectors are column vectors.

Boldface capital letters denote matrices.

Matrix transpose.

Identity matrix of size .

The index set of nodes that are in the
neighborhood of node , including .

The index set of nodes that are in the
neighborhood of node , excluding .

Cluster , i.e., index set of nodes in the
-th cluster.

The cluster to which node belongs, i.e.,
.

, Cost functions without/with regularization.

, Optimum parameter vectors without/with
regularization.

, , Optimum parameter vectors at node , at
cluster , and at cluster .

We consider a connected network consisting of nodes. The
problem is to estimate an unknown vector at each node
from collected measurements. Node has access to temporal

measurement sequences , with denoting
a scalar zero-mean reference signal, and denoting an
regression vector with a positive-definite covariance matrix,

. The data at node are assumed
to be related via the linear regression model:

(1)

where is an unknown parameter vector at node , and
is a zero-mean white noise that is independent of any other
signal and has variance . Considering the number of param-
eter vectors to estimate, which we shall refer to as the number
of tasks, the distributed learning problem can be single-task or
multi-task oriented. We therefore distinguish among the fol-
lowing three types of networks, as illustrated by Fig. 1, de-
pending on how the parameter vectors across the nodes are
related:
• Single-task networks: All nodes have to estimate the same
parameter vector . That is, in this case we have that

(2)

• Multitask networks: Each node has to determine its own
optimum parameter vector, . However, it is assumed that
similarities and relationships exist among the parameters
of neighboring nodes, which we denote by writing

(3)

The sign represents a similarity relationship in some
sense, and its meaning will become clear soon once we in-
troduce expressions (8) and (9) further ahead. There are
many situations in practice where the objective parame-
ters are not identical across clusters but have inherent re-
lationships. It is therefore beneficial to exploit these rela-
tionships to enhance performance. A number of applica-
tion problems can be addressed using this model. For in-
stance, consider an image sensor array and the problem of
image restoration. In this case, links in Fig. 1(b) can rep-
resent neighboring relationships between adjacent pixels.
We will consider this application in greater detail in the
simulation section. Promoting similarity relationships can
be performed in several ways. Within the area of machine
learning, for instance, this has been performed through
mean regularization [47], low rank regularization [48], or
clustered regularization [49]. In this paper, in the spirit of
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[47], we focus on promoting the similarity of objective pa-
rameter vectors via their distance to each other.

• Clustered multitask networks: Nodes are grouped into
clusters, and there is one task per cluster. The optimum
parameter vectors are only constrained to be equal within
each cluster, but similarities between neighboring clusters
are allowed to exist, namely,

(4)
(5)

where and denote two cluster indexes. We say that two
clusters and are connected if there exists at least one
edge linking a node from one cluster to a node in the other
cluster.

One can observe that the single-task and multitask networks
are particular cases of the clustered multitask network. In the
case where all nodes are clustered together, the clustered mul-
titask network reduces to the single-task network. On the other
hand, in the case where each cluster only involves one node,
the clustered multitask network becomes a multitask network.
Building on the literature on diffusion strategies for single-task
networks, we shall now generalize its use and analysis for dis-
tributed learning over clustered multitask networks. The results
will be applicable to multitask networks by setting the number
of clusters equal to the number of nodes.

III. PROBLEM FORMULATION

A. Global Cost Function and Optimization

Clustered multitask networks require that nodes that are
grouped in the same cluster estimate the same coefficient
vector. Thus, consider the cluster to which node be-
longs. A local cost function, , is associated with node
and it is assumed to be strongly convex and second-order

differentiable, an example of which is the mean-square error
criterion defined by

(6)

Relationships between tasks is a mutual information that de-
serves attention because it can improve the estimation accu-
racy. A diversity of regularizers can be considered to exploit
this additional information. Promoting similarities among es-
timated parameter vectors via their distance to each other is
simple but effective in many applications [47]. Two examples
will be presented in later sections. For this purpose, we intro-
duce the squared Euclidean distance as a possible regularizer,
namely,

(7)

Combining (6) and (7) yields the following regularized problem
at the level of the entire network:

where

(8)

where is the parameter vector associated with cluster ,
is a regularization parameter, and the symbol is the set

difference. The second term on the right-hand-side of expres-
sion (8) promotes similarities between the of neighboring
clusters, with strength parameter .
Observe from the right-most term in (8) that the regular-

ization strength between two clusters is directly related to
the number of edges that connect them. The non-negative
coefficients aim at adjusting the regularization strength
but they do not necessarily enforce symmetry. That is, we do
not require even though the regularization term

is symmetric with respect to the weight
vectors and ; this term will be weighted by the sum

due to the summation over the nodes. Conse-
quently, problem formulation inevitably leads to symmetric
regularization despite the fact that . However, we
would like the design problem to benefit from the additional
flexibility that is afforded by the use of asymmetric regular-
ization coefficients. This is because asymmetry allows clusters
to scale their desire for closer similarity with their neighbors
differently. For example, asymmetric regularization would
allow cluster to promote similarities with cluster while
cluster may be less inclined towards promoting similarities
with . In order to enable this possiblity, we consider an
alternative problem formulation defined in terms of Nash
equilibrium problems as follows:

where

(9)

where each cluster estimates by minimizing
. Note that we have kept the notation to

make the role of the regularization term clearer, even though
in formulation (9) we have since in . In (9),
the notation denotes the collection of weight vectors
estimated by the other clusters. The Nash equilibrium of
satisfies the condition [50]:

(10)

for , where the notation denotes the collec-
tion of the Nash equilibria by the other clusters. Problem has
the following properties:
1) An equilibrium exists for since is
convex with respect to for all .
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2) The equilibrium for problem is unique since
satisfies the diagonal strict con-

vexity property1.
3) Problems and have the same solution by setting the
value of in to that of from .

Properties 1) and 2) can be checked via Theorems 1 and 2 from
[51]. Property 3) can be verified by the optimality conditions for
the two problems, and highlights the relation between these two
problems. This also shows that, in this case, the Nash equilib-
rium is a Pareto solution of problem .
Problem can be solved either analytically in closed form

or iteratively by using a steepest-descent algorithm. Neverthe-
less, we shall focus on problem since can be addressed as
a special case of because of Property 3). Unfortunately, there
is no analytical expression for general Nash equilibrium prob-
lems. We estimate the equilibrium of problem iteratively by
the fixed point of the best response iteration [50], i.e., by using:

(11)

for . Since the equilibrium is unique and the cost
function for each cluster is convex, the solution of (11) can
be approximated by means of a steepest-descent iteration as
follows:

(12)

for , with denoting the gradient operation
with respect to , and a positive step-size. We have from
(9) that

(13)

where is the input-output cross-corre-
lation vector between and at node . If it is neces-
sary to impose some constraints on the parameters that the net-
work is estimating, then the gradient update relation can bemod-
ified by using methods such as projection [52], fixed point iter-
ation techniques [53], or penalty-based techniques [54]. In the
body of the paper, we focus on the unconstrained case during the
algorithm derivation and its analysis. However, a constrained
problem will be presented in the simulation section.
In this paper, we shall consider normalized weights that sat-

isfy

(14)

The sum-to-one normalization is optional but imposed here to
clarify the roles of and , namely, controls the regular-
ization strength while the adjust this strength among the
1Let arranged as a column vector

with . The cost functions satisfy the diagonal
strict convexity property, that is, for all
nonequal , .

neighbors that are connected. Similar to any popular regulariza-
tion terms, e.g., Tikhonov [55], sparsity-inducing norms [56],
TV-norm regularization [57], etc., the parameter is usually
pre-adjusted using prior information or user preference. Clearly,
if is set to 0, the algorithm degenerates to the extensively
studied diffusion LMS within each cluster, that is, without in-
formation exchange between tasks. The larger the regulariza-
tion constant is, the more homogeneous the estimates over
the entire network are. This regularization constant leaves the
user free to drive the algorithm towards distinct solutions or a
homogeneous solution, and can also depend on the structure of
the network. How to set these coefficients obviously depends
on the application at hand. For instance, in our simulations in
later sections, we use the spatial organization of clusters or sim-
ilarity measures between local reference signals to set the
parameters .

B. Local Cost Decomposition and Problem Relaxation

The solution method (12) using (13) requires that every node
in the network should have access to the statistical moments

and over its cluster. There are two problems with
this scenario. First, nodes can only be assumed to have ac-
cess to information from their immediate neighborhood and
the cluster of every node may include nodes that are not
direct neighbors of . Second, nodes rarely have access to the
moments ; instead, they have access to data gen-
erated from distributions with these moments. Therefore, more
is needed to enable a distributed solution that relies solely
on local interactions within neighborhoods and that relies on
measured data as opposed to statistical moments. To derive a
distributed algorithm, we follow the approach of [3], [17]. The
first step in this approach is to show how to express the cost
(9) in terms of other local costs that only depend on data from
neighborhoods.
Thus, let us introduce an right stochastic matrix

with nonnegative entries such that

(15)

where denotes the set intersection. With these coefficients, we
associate a local cost function of the following form with each
node [3]:

(16)

One important distinction from the local cost defined in [3] is
that in [3] the summation in (16) is defined over the entire neigh-
borhood of node , i.e., for all . Here we are excluding
those neighbors of that do not belong to its cluster. This is
because these particular neighbors will be pursuing a different
parameter vector than node . Furthermore, we note in (16) that

because . To make the notation sim-
pler, we shall write instead of . A consequence of this
notation is that for all . Incorporating the es-
timates of the neighboring clusters, we modify (16) to associate
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a regularized local cost function with node of the following
form

(17)

Observe that this local cost is now solely defined in terms of
information that is available to node from its neighbors. Using
this regularized local cost function, it can be verified that the
global cost function for cluster in (9) can be now expressed
as

(18)

Let denote the minimizer of the local cost function (17),
given for all . A completion-of-squares argu-
ment shows that each can be expressed as

(19)

where

(20)

Substituting (19) into the second term on the right-hand-side
of (18), and discarding the terms because they are
independent of the optimization variables in the cluster, we can
consider the following equivalent cost function for cluster
at node :

(21)

where it holds that because . Note that
we have omitted in the notation for in (21) for
the sake of brevity. Therefore, minimizing (21) is equivalent to
minimizing the original cost (18) or (9) over . However the
second term (21) still requires information from nodes that
may not be in the direct neighborhood of node even though
they belong to the same cluster. In order to avoid access to infor-
mation via multi-hop, we can relax the cost function (21) at node
by considering only information originating from its neigh-

bors. This can be achieved by replacing the range of the index
over which the summation in (21) is computed as follows:

(22)

Usually, especially in the context of adaptive learning in a
non-stationary environment, the weighting matrices are un-
available since the covariance matrices at each node may
not be known beforehand. Following an argument based on the
Rayleigh-Ritz characterization of eigenvalues, as explained in
[3], [25], a useful strategy is to replace each matrix by a
weighted multiple of the identity matrix, say, as:

(23)

for some nonnegative coefficients that can possibly depend
on the node . As shown later, these coefficients will be incor-
porated into a left stochastic matrix to be defined and, therefore,
the designer does not need to worry about the selection of the

at this stage. Based on the arguments presented so far, and
using (17), the cost function (22) can then be relaxed to the fol-
lowing form:

(24)

Observe that the two last sums on the right-hand-side of (24) di-
vide the neighbors of node into two exclusive sets: those that
belong to its cluster (last sum) and those that do not belong to its
cluster (second term). In summary, the argument so far enabled
us to replace the cost (9) by the alternative cost (24) that de-
pends only on data within the neighborhood of node . We can
now proceed to use (24) to derive distributed strategies. Sub-
sequently, we study the stability and mean-square performance
of the resulting strategies and show that they are able to per-
form well despite the stochastic approximations introduced in
the derivation.

IV. STOCHASTIC APPROXIMATION ALGORITHMS

To begin with, a steepest-descent iteration can be applied by
each node to minimize the cost function (24). Let de-
note the estimate for at iteration . Using a constant step-size
for each node, the update relation would take the following

form:

(25)

It is well-known in the stochastic adaptation literature (e.g.,
[58]) that there is a tradeoff between steady-state perfor-
mance and convergence rate: small step-sizes lead to better
mean-square-error performance at the expense of slower con-
vergence. Schemes to switch between different step-size values
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to enhance the transient and steady-state behavior are possible.
We continue the analysis by focusing on a constant step-size.
The resulting performance expressions, when desired, can be
optimized over the value of the step-size.
Now, among other possible forms, expression (25) can be

evaluated in two successive update steps

(26)

(27)

Following the same line of reasoning from [3] in the single-task
case, and extending the argument to apply to clusters, we use

as a local estimate for in (27) since the latter is
unavailable and is an intermediate estimate for it that
is available at node at time . In addition, again in step
(27), we replace by since it is a better esti-
mate obtained by incorporating information from the neighbors
according to (26). Step (27) then becomes

(28)

The coefficients in (28) can be redefined as:

(29)

It can be observed that the entries are nonnegative for all
and (including ) for sufficiently small step-size. Moreover,
the matrix with ( )-th entry is a left-stochastic matrix,
which means that the sum of each of its columns is equal to one.
With this notation, we obtain the following adapt-then-combine
(ATC) diffusion strategy for solving problem (9) in a distributed
manner:

(30)

It is also possible to arrive at a combine-then-adapt (CTA) dif-
fusion strategy where the aggregation step is performed prior to
the adaptation step [3]. In what follows, it is sufficient to focus
on the ATC strategy to illustrate the main results. Employing
instantaneous approximations for the required signal moments
in (30), we arrive at the desired diffusion strategy for clustered

multitask learning described in Algorithm 1 where the regular-
ization factors are chosen according to (14), and the coeffi-
cients are nonnegative scalars chosen at will by the
designer to satisfy the following conditions:

(31)

(32)

There are several ways to select these coefficients such as using
the averaging rule, the relative variance rule, the Metropolis
rule, etc., see [3] for a listing of these and other choices.

Algorithm 1: Diffusion LMS for clustered multitask networks

Start with for all , and repeat:

(33)

In the case of a single-task network when there is a single
cluster that consists of the entire set of nodes we get

and for all , so that expression (33) reduces
to the diffusion adaptation strategy [3], [17] described in Algo-
rithm 2.

Algorithm 2: Diffusion LMS for single-task networks [16],
[17].

Start with for all , and repeat:

(34)

Algorithm 3: Diffusion LMS for multitask networks

Start with for all , and repeat:

(35)

In the case of a multitask network where the size of each
cluster is one, we have and
for all . Then algorithm (33) degenerates into Algorithm 3.
Interestingly, this is the instantaneous gradient counterpart of
(12) for each node.
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It is clear that there is no significant difference between the
computational complexities of Algorithms 1 and 2. Algorithm
3 can be viewed as a spatially-regularized LMS algorithm, with
a slight additional communication burden compared to non-co-
operative LMS.

V. MEAN-SQUARE ERROR PERFORMANCE ANALYSIS

We now examine the stochastic behavior of the adaptive dif-
fusion strategy (33). In order to address this question, we collect
information from across the network into block vectors and ma-
trices. In particular, let us denote by , and the block
weight estimate vector, the block optimum weight vector, and
block intermediate weight estimate vector, all of size 1,
i.e.,

(36)
(37)
(38)

where stacks its vector arguments, and . The
weight error vector for each node at iteration is defined by

. The weight error vectors are also
stacked on top of each other to get the block weight error vector
defined as follows:

(39)

To perform the theoretical analysis, we introduce the following
independence assumption.
Assumption 1: (Independent regressors) The regression vec-

tors arise from a stationary random process that is tem-
porally stationary, temporally white and independent over space
with covariance matrix .
A direct consequence is that is independent of

for all and . Although not true in general, this assump-
tion is commonly used for analyzing adaptive constructions be-
cause it allows to simplify the derivations without constraining
the conclusions [58].

A. Mean Error Behavior Analysis

The estimation error that appears in the first equation of (33)
can be rewritten as

(40)

because for all . Subtracting from
both sides of the first equation in (33), and using the above re-
lation, the update equation for the block weight error vector of

can be expressed as

(41)

where

(42)

with denoting the Kronecker product, and the matrix
with -th entry , and if is empty.

Moreover, the matrix is block diagonal of size
defined as

(43)

and is the following vector of length 1:

(44)

Let . The second equation in (33) then allows us
to write

(45)

Subtracting from both sides of the above expression, and
using (41), the update relation can be written as

(46)

Taking the expectation of both sides, and using Assumption 1
we get

(47)

where

(48)

with

(49)

Theorem 1: (Stability in the mean) Assume data model (1)
and Assumption 1 hold. Then, for any initial condition, the dif-
fusion multitask strategy (33) asymptotically converges in the
mean if the step-size is chosen to satisfy

(50)

where denotes the spectral radius of its matrix argument. A
sufficient condition for (50) to hold is to choose such that

(51)

where denotes the maximum eigenvalue of its matrix
argument. In that case, it follows from (47) that the asymptotic
mean bias is given by

(52)

Proof: Since any inducedmatrix norm is lower bounded by
the spectral radius, we have the following relation in terms of
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the block maximum norm (see [3] for definition and properties
of the norm):

(53)

Now using norm inequalities and the fact that is a left-sto-
chastic matrix (whose block maximum norm is equal to one),
we find that:

(54)

using (42). Now, it holds that

(55)

because is a right stochastic matrix according to condition
(14). Furthermore, since is a block diag-
onal Hermitian matrix, its block maximum norm is equal to its
spectral radius [3]. We therefore conclude that a sufficient con-
dition for mean stability is to require

(56)

which yields condition (51).
Condition (51) shows that the stability limit in the mean of the

multitask diffusion LMS is lower than diffusion LMS (34) due
to the presence of . Themean convergence rate of the algorithm
is governed by the spectral radius .

B. Mean-Square Error Behavior Analysis

In order to make the presentation clearer, we shall use the
following notation for terms in the weight-error expression (46):

(57)

so that

(58)

Using Assumption 1 and , the mean-square of the
weight error vector , weighted by any positive semi-def-
inite matrix that we are free to choose, satisfies the following
relation:

(59)

where

(60)
(61)

In expression (59), the freedom in selecting will allow us to
derive several performance metrics. Let

(62)

where . Then, relation (59) can be rewritten as

(63)

We would like to argue that this variance relation converges
for sufficiently small step-sizes and we would also like to
evaluate its steady-state value in order to determine the
mean-square-error of the distributed strategy. However, note
that the weighting matrices and on both sides of (63) are
different, which means that (63) is still not an actual recursion.
To handle this situation, we transform the weighting matrices
into vector forms as follows. Let denote the operator
that stacks the columns of a matrix on top of each other. Vec-
torizing and by and , it can be
verified that relation (61) between them can be expressed as the
following linear transformation:

(64)

where is the matrix given by

(65)

Neglecting the influence of second-order terms in , can be
approximated by

(66)

Finally, let us define as the last two terms on the
right hand side of (63), i.e.,

(67)
where we will be using the notation and interchange-
ably. For notational convenience, we are omitting the argument
of since it is deterministic. Equation (63) can be expressed

as follows:

(68)

Theorem 2: (Mean-square stability) Assume data model (1)
and Assumption 1 hold. Assume further that the step-size
is sufficiently small such that approximation (66) is justified
by neglecting higher-order powers of , and relation (68) can
be used as a reasonable representation for the evolution of the
(weighted) mean-square-error. Then, the diffusion multitask
strategy (33) is mean-square stable if the matrix is stable.
Under approximation (66), the stability of is guaranteed by
sufficiently small step-sizes that also satisfy (51).
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Proof: Iterating recursion (68) starting from , we
find that

(69)

with initial condition . Provided that is
stable, the first and second terms on the RHS of (69) converge as

, to zero for the former, and to a finite value for the latter.
Consider now the third term on the RHS of (69). We know from
(47) that is uniformly bounded because (47) is a BIBO
stable recursion with a bounded driving term .
Moreover, from (67), the expression for
can be written as

(70)

We further know that defined by (66) is stable. There-
fore, there exists a matrix norm [3], denoted by ,
such that . Applying this norm to
and using the triangular inequality, we can deduce that

for some positive finite constant
. It follows that the sum appearing as the right-most term in
(69) converges as . We conclude that
converges to a bounded value as , and the algorithm is
said to be mean-square stable.
Theorem 3: (Transient MSD) Considering a sufficiently

small step-size that ensures mean and mean-square stability,
and selecting , then the network MSD learning
curve, defined by evolves according to
the following recursions for :

(71)
(72)

with initial condition and .
Proof: Comparing (69) at instants and , we can

relate to as follows:

(73)

We can rewrite the last two terms on the RHS of (73) as

(74)

where

(75)

We can then reformulate recursion (73) as follows:

(76)

(77)

with . To derive the transient curve for the
MSD, we replace by .
Theorem 4: (Steady-state MSD) If the step size is chosen suf-

ficiently small to ensure mean and mean-square-error conver-
gence, then the value of the steady-state MSD for the diffusion
network (33) is given by

(78)

where is determined by expression (52).
Proof: The steady-state MSD is the limiting value

(79)

From the recursive expression (68) we obtain as that

(80)

Comparing expressions (79) and (80), we observe that to arrive
at the MSD requires us to choose to satisfy

(81)

This leads to expression (78).

VI. SIMULATION EXAMPLES
In this section, we first conduct simulations on a simple

network to illustrate the proposed algorithm and the analyt-
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Fig. 2. Experimental setup. Left: network studied in Section VI-A, with 10 nodes divided into 4 different clusters. Right: input signal and noise variances for each
node.

ical performance models. Then, we provide several examples
where the proposed distributed learning strategy may find
applications.

A. Illustrative Numerical Example

In this subsection we provide an illustrative example to
show how the proposed distributed algorithm converges
over clustered multitask network. We consider a network
consisting of 10 nodes with the topology depicted in Fig. 2
(left). The nodes were divided into 4 clusters: ,

, and . Two-dimen-
sional coefficient vectors of the form were
chosen as , ,

, , and
. The regression inputs

were zero-mean 2 1 random vectors governed by a Gaussian
distribution with covariance matrices , and the

shown in the top right plot of Fig. 2. The background
noises were i.i.d. zero-mean Gaussian random variables,
independent of any other signals. The corresponding variances

are depicted in the bottom right plot of Fig. 2.
Regularization strength was set to

for , and for any other . This setting usu-
ally leads to asymmetrical regularization weights. We consid-
ered the diffusion algorithm with measurement diffusion gov-
erned by a uniform matrix such that
for . Likewise, a uniform was used such that

for .
The algorithm was run with different step-size and regular-

ization parameters such as , and
. Simulation results were obtained by averaging 100

Monte-Carlo runs. Transient MSD curves were obtained by (71)
and (72). Steady-state MSD values were obtained by expression
(78). It can be observed in the left plot of Fig. 3 that the models
accurately match the simulated results.
These models were used to illustrate the performance of sev-

eral learning strategies: 1) the non-cooperative LMS algorithm,
2) the multitask algorithm (Algorithm 3), and 3) the clustered

multitask algorithm (Algorithm 1). The non-cooperative algo-
rithm was obtained by assigning a cluster to each node and set-
ting . The multitask algorithm was obtained by assigning
a cluster to each node and setting . Note that Algorithm
2 was not considered for comparison because it is a single-task
estimationmethod. The right plot of Fig. 3 shows that the nonco-
operative algorithm has the largest MSD as nodes do not collab-
orate for additional benefit. If estimation is performed without
cluster information, but only with regularization between nodes
as in the case of the multitask diffusion LMS, it can be observed
that the performance is better than in the non-cooperative case.
Finally, providing prior information to the clustered multitask
network via an appropriate definition of clusters leads to the
best performance. Clustering strategies are not discussed in this
paper. This will be investigated in future work. One strategy is
proposed in [32].

B. Distributed Non-Point Target Localization
The second application addresses the problem of target lo-

calization. Existing localization methods based on the diffusion
strategy assume point targets [3], [59]. However, in some situ-
ations, targets may not be reduced to a single point such as its
centroid. For instance, this includes the case where the target
is a region of interest scanned by a laser light sheet. The algo-
rithm should be able to jointly estimate a series of coordinates
that characterizes the target area.
The problem we considered is shown in Fig. 4. The target was

the arc of a circle with center . The angular resolution of the
nodes was denoted by . This means that arcs of the circle with
solid angle were viewed as a single point by the cluster
of nodes within the cone of axis . Note that the distance
between each node and can be expressed in the inner
product form

(82)

where is the location of node , and is the unit-norm
vector pointing from to . We assumed that sensors were
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Fig. 3. Network performance illustration. Left: transient and steady-state MSD (model vs. Monte Carlo) for different step-sizes and regularization parameters.
Right: performance comparison for different strategies using theoretical models.

Fig. 4. Target surface localization.

aware of their location . Let , that is,
. The problem was thus to estimate from noisy

input-output data collected by nodes .
The model that was thus considered is given by [3]:

(83)

with a zero-mean temporally and spatially i.i.d. Gaussian
noise of variance . Moreover, the measured direction
was assumed to be a noisy realization of the unit-norm vector
pointing from to , with and two Gaussian
random variables of variances and , respectively.
The multitask algorithm (33) was used to estimate the coor-

dinates for , and to approximate the arc of
radius . Each node was connected to its neighbors within its
cluster and the adjacent clusters. We considered two network
topologies. In the first scenario, see the left-hand plot in Fig. 5
(first row), 100 nodes ranging from to were grouped
into 10 clusters, with 10 nodes in each. The nodes were de-
ployed uniformly with connections between neighbors. In the
second scenario, see the right-hand plot in Fig. 5 (first row),
200 nodes ranging from to were grouped into 10 clus-
ters, with 20 nodes in each cluster. The nodes were deployed
randomly. For both experiments, the noise variances were set

as follows: , , and . We used an
identity information exchange matrix . The combina-
tion matrix was defined as in order
to average the estimates of within-cluster neighbors. The reg-
ularization strengths were set to for

, with and . Recall that and
are boundary clusters, and the specific regularization strengths

for all were used to preserve the configuration
of the group.
We ran the non-cooperative algorithm, and the clustered mul-

titask algorithm with and for each sce-
nario, respectively. Fig. 5 (second row) shows one realization
of the estimated points for each arc. The cooperative al-
gorithm clearly outperformed the non-cooperative algorithm.
Fig. 5 (third row) compares the MSD of the two strategies men-
tioned above, with the clustered multitask algorithmwith .
In this case, the diffusion strategy is applied independently in
each cluster, without inter-cluster interactions. This experiment
clearly illustrates the advantage of fully cooperative strategies
in this problem.

C. Distributed Unmixing of Hyperspectral Data

Finally, we consider the problem of distributed unmixing of
hyperspectral images using the multitask learning algorithm.
Hyperspectral imaging provides 2-dimensional spatial images
over many contiguous bands. The high spectral resolution al-
lows to identify and quantify distinct materials from remotely
observed data. In hyperspectral images, a pixel is usually a spec-
tral mixture of several spectral signatures of pure materials,
termed endmembers, due to limited spatial resolution of de-
vices and diversity of materials [60]. Although nonlinear mix-
ture models have begun to support novel applications [61]–[63],
the linear mixture model is still widely used for determining and
quantifying materials in sensed images due to its simpler phys-
ical interpretation. With the linear mixture model, pixels can
be decomposed as linear combinations of constituent spectra,
weighted by fractions of abundance.
To facilitate the presentation, we shall consider that the 3-di-

mensional hyperspectral image under study has been reshaped
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Fig. 5. Target surface localization. Left: uniform network. Right: randomly-distributed network. Row 1: network connectivity, with cluster boundaries in green.
Row 2: estimation results, red crosses for the non-cooperative algorithm, black circles for the cooperative algorithm. Row 3: MSD learning curves.

into an matrix , with the number of
pixels and the number of wavelengths. Let be the
matrix of endmember spectra, with the number of endmem-
bers, and the matrix of the abun-
dance vectors of the pixels in . The linear mixture model is
expressed by

(84)

where is the modeling error matrix. Suppose
that the material signatures (matrix ) in a scene have been de-

termined by some extraction algorithm [64]–[66]. The unmixing
problem boils down to estimating the abundance vector associ-
ated with each pixel. Besides minimizing the modeling error,
it is important to promote similarities of abundance vectors be-
tween neighboring pixels due to their possible correlations. Now
we write the unmixing problem as follows:

(85)
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Fig. 6. Hyperspectral image unmixing problemwith first-order connections be-
tween neighboring nodes.

where is the matrix Frobenius norm, is the set of neigh-
bors of pixel , is the spatial regularization parameter and
is the regularization weights. In the above expression, the non-
negativity constraints and sum-to-one constraints are imposed
to ensure physical interpretability of the vectors of fractional
abundances.
To conduct linear unmixing of large images in a distributed

way, we considered each sensor of the camera as a node, and
we applied the diffusion LMS for multitask problems, that is,
one node per cluster – see Fig. 6. In order to exploit the spatial
correlations, we defined the regularization function
as the -norm of to promote piecewise constant tran-
sitions in the fractional abundance of each endmember among
neighboring pixels. Similar regularization can be found in [67],
[68]. This led us to the following algorithm:

(86)

where we used that the subgradient , with
the component-wise sign function. In this expression,
denotes the iterative operator defined in [69] that projects

a vector onto the nonnegative phase of the -ball to satisfy the
nonnegativity and sum-to-one constraint in (85). This algorithm
clearly contrasts with existing batch approaches based on FISTA
[70] and ADMM [71], which cannot easily address large prob-
lems (84).
The algorithm (86) was run on a data cube containing

100 100 mixed pixels. Each pixel was generated by the linear
mixture model (85) using 9 endmember signatures randomly
selected from the spectral library ASTER [72]. Each signa-
ture of this library has reflectance values measured over 224
spectral bands, uniformly distributed in the interval 3 – 12
. The abundance maps of the endmembers are the same as

for the image DC2 in [71]. Among these 9 materials, only the
1st, 6th, 8th, and 9th abundances are considered for pictorial
illustration in Fig. 8. The first row of this figure depicts the
true distribution of these 5 materials. Spatially homogeneous
areas with sharp transitions can be clearly observed. The gen-
erated scene was corrupted by a zero-mean white Gaussian
noise with an SNR level of 20 dB. In this experiment, the

Fig. 7. RMSE curve comparison.

regularization weights were set equal to the normalized
spectral similarity: where

. These weights emphasize the
regularization between similar pixels and de-emphasize it for
less similar pixels. When one knows the ground truth map,
a commonly used performance measure for evaluating the
performance of an unmixing algorithm is the root mean-square
error (RMSE), defined as

The RMSE learning curves using algorithm (86), with spatial
regularization ( ) and without spatial regularization
( ), are depicted in Fig. 7. The corresponding abundance
distributions are shown in Fig. 8. The spatial regularization re-
sults in a lower estimation error, and more homogenous abun-
dance distribution maps with less noise.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we formulated multi-task problems where net-
works are able to handle situations beyond the case where the
nodes estimate a unique parameter vector over the network.
Considering each parameter vector estimation as a task, and
possibly connecting these tasks in order that they can share in-
formation, we extended the distributed learning problem from
single-task learning to clustered multitask learning. An algo-
rithm was derived. A mean behavior analysis of the proposed
algorithm was provided, in the case of the least-mean-square
error criterion with -norm regularization. Several applications
that may benefit from this framework were investigated. Sev-
eral open problems still have to be solved for specific applica-
tions. For instance, it would be interesting to show which regu-
larization can be advantageously used with our distributed mul-
titask algorithm, and how they can be efficiently implemented
in an adaptive manner. It would also be interesting to investigate
how nodes can autonomously adjust regularization parameters
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Fig. 8. Abundance maps. From left to right: 1st, 6th, 8th, and 9th abundances. From top to bottom: true abundances, estimated abundances without and with
spatial regularization.

to optimize the learning performance and how they can learn the
structure of the clusters in real-time.
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